
International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-32

The Cost of a Tourist Tour – a Database of

Knowledge Written in Python

S. Sveleba, I. Kunyo, I. Karpa

Ivan Franko National University of Lviv

107 Tarnavsky St.,

UA–79017 Lviv, Ukraine

incomlviv@gmail.com

N. Sveleba

Lviv Institute of Economics and Tourism

8 Mentsynskyi St.,

UA–79007 Lviv, Ukraine

incomlviv@gmail.com

Abstract—The Python language demo database is created in

the work, which contains the concept of the value of the tour and

the factors that affect this value and the causal relationship

between these concepts.

Index Terms—knowledge base; Python language; people

recreation.

By definition, the knowledge base is a set of facts and rules
of logical conclusion (output) in the chosen subject area. Rules
of logical conclusion are the rules for transforming the original
system of facts (judgments) into a new system of facts
(conclusions). A program that executes a logical conclusion
from a pre-built base of facts and rules in accordance with the
laws of formal logic, is called the output machine. The
knowledge base and the output machine are the main
components of the expert system - a program that is designed
to find ways to solve problems in a specific subject area. [1, 2].

At present, a lot of knowledge has been accumulated
concerning the definition of the cost of services of tourist
enterprises. However, there is a problem of the effective use of
this knowledge by people who are planning recreation.
Literature and other sources of expert information on cost
(price) and quality of tourist services mainly contain a set of
facts in the form of causal relationships and relationships
between factors that affect the cost of travel services. There is a
problem of efficient presentation of such knowledge. The main
idea is to use as a knowledge representation language and to
create queries to the knowledge base of the Python
programming language [4, 5], which, unlike the special
languages, is a general purpose language and therefore gives
the developer of the expert system much more opportunities.
To do this, you can use object-oriented capabilities of Python
and its introspection, since it is known that such methods of
presentation of clear knowledge, such as frames and semantic
networks, can be easily implemented by means of object-
oriented programming.

Python supports full runtime introspection. That is, for any
object during execution it is possible to obtain all information
about its structure [4]. For example, the most well-known
introspection tool in Python is the dir () function, which returns
a list of attribute names for the object passed to it. The function
type () or the __class__ attribute allows you to get the type of

object. The vars () function or the __dict__ attribute allows you
to get the dictionary with the pairs attribute: the value of the
object. The functions hasattr (), getattr () and setattr () allow
you to check the presence of an attribute in the object, return it
and change the value. The issubclass () function allows you to
determine whether one class is inherited from another, and the
__subclasses __ () method returns the subclass list. The
parenthesis tuple and their hierarchy can be obtained using the
__bases__ and __mro__ attributes. The inspect module
contains additional features that help you get information about
objects at runtime. The use of introspection allows you to
effectively program output mechanisms and queries to the
knowledge base.

The Python language demo database is created in the work,
which contains the concept of the value of the tour and the
factors that affect this value and the causal relationship
between these concepts. To construct a knowledge base, a
framing model of knowledge representation has been applied.
The Python module, which contains the knowledge base and
queries for it, must have a block structure - classes are created
first, then individuals, then the properties of individuals are
specified, and in the end, requests are executed. Ontology
classes correspond to the Python language classes, and
subclasses can be created using the Python inheritance
mechanism. Thus, the base class Base (describes all objects
that have a name) and the classes that inherit it are developed:
Factor (describes the factor that affects the cost of the tour),
Fact (describes the fact in the form of a triplet subject-
predicate- object), Reference (describes the reference to the
source of the fact), Dependence (describes the dependence of
the value of X on the value of Y).

Individual ontology matches Python objects - the value of
the KB dictionary. This method allows you to address
individuals by their name in the form of a Unicode string.
Individuals can have properties in the form of Python
attributes, which allow describing the relationship between
individuals. Properties are objects of the Property class, have
attributes subj (the property of the property is an individual that
has this property), name (property name), inverseName
(inverse property name), functional (defines whether the
property is functional), symmetric (defines whether the
property is symmetric), transitive (determines whether the

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-33

property is transitive), set (set of power values), and methods
__init __ () (constructor, creates the property), add () (adds an
object or tuple of objects to a plurality) and __call __ ()
(returns a set of properties values). The last two methods
implement the elements of the output machine. Such items may
also be present in queries to the knowledge base.

Knowledge base contains individuals "fatigue",
"corrosion", "stress concentration", "cyclic load", "aggressive
environment", etc. - objects of the corresponding classes. The
created individual object is automatically added to the KB
dictionary. Block creation of objects of individuals looks like
this:
KB = {} # Knowledge Base Dictionary

Factor ('price') # create object-factor 'price'; Factor ('tour
price'); Factor ('hotel'); Factor ('number standard'); Factor
('semi-suite'); Factor ('deluxe'); Factor ('hotel type'); Factor
('transport services'); Factor ('nutrition'); Factor ('excursions');
Factor ('parking'); Factor ('coastline'); Factor ('tour duration');
Factor ('seasonality') ; Factor ('wi-fi'); Factor ('banking
services'); Factor ('pool'); Factor ('SPA'); Factor ('playgrounds')
Reference ('Vacation in Spain [Electronic resource] - Access
mode: http://travel-world.pp.ua/'); Reference ('All hotels in the
world [Electronic resource] - Access mode:
http://bestdealsonhotel.com/'); Reference ('Hotels in Spain
[Electronic resource] - Access mode: http://costagarant.com/');
Dependence (name = 'Dependence of the price of a standard
number from time of year', xy = [(0.6.575), (0.7.620),
(0.8.630), (0.9.600), (0.10.550)], relative = 'is the minimum')
block creation of facts; # subject 'tour price' 'is the reason' of
the object 'lasting tour'; Fact ('tour price', 'isEffect', 'duration of
the tour'); Fact ('tour price', 'isEffect', 'hotel type'); Fact ('tour
price', 'isEffect', 'seasonality')

The Base class (cost of the tour) contains the attribute name
(object name) and the properties And, Or, Not, which allow
you to create new objects using logical operations. The Factor
class also contains the isCause (is the cause) and isEffect (is a
consequence) property. The Fact class contains attributes
subjName (subject name), propName (name of the predicate -
properties), objName (object name) and hasReference
properties (has a link), hasDependence (has a dependency).
The Reference class contains the isReference property (a link).
The Dependence class contains attributes xy (relative data),
relative attribute, isDependence property, and plot function
(depicts a dependency graph) and interp (finds the value of
linear interpolation). The property is created when creating an
individual by calling its constructor __init __ () with
parameters subj, name, inverseName, functional, symmetric,
transitive, which describe its characteristics. So the isCause and
isEffect properties are mutually inverse. This allows, for
example, from the statement "the price of a tour is a
consequence of the duration of the tour" to make a logical
conclusion "the duration of the tour determines the price of the
tour." They are also transitive. Properties can be functional,
that is, have a unique value, and are symmetric, for example,
with the statement "X is Y" to make a logical conclusion "Y is
X". Values in the property are added using the add () method.

The block of adding values to the properties of individuals
looks like this:

'tour price' 'is the reason for' hotel type '

KB ['tour price'].isCause.add (KB ['hotel type'])
KB ['tour price'].isCause.add (KB ['power'])
KB ['tour price'].isEffect.add (KB ['trips'])
KB ['tour duration'].isCause.add (KB ['trips'], KB ['coastline'])
KB ['tour price'].and.add (KB ['parkawka'], KB ['SPA'])
KB ['tour price'].hasReference.add (KB ['Book your stay in
Seville and get exclusive discounts on the city's main
attractions [Electronic resource] - Access mode:
https://www.booking.com/city / es / sevilla.uk.html '])

KB [price of the tour.isCause.sensibility
'].hasDependence.add (KB [' Standard Room Price
Dependency from the Seasons'])

Requests for knowledge base are created by searching for
objects in sets. You can use Python for and if statements to do
this. To access the sets, use the KB object, the property class
__call __ (), and standard math operations over sets. The
method __call __ () with the showTransitive = True parameter
returns the set of all values of the transitive property. For
example, a query that displays all the reasons for the "price"
factor:
for x in KB ['price'].isEffect (True):

print x.name + '|',

The following query shows facts associated with a
particular source:
for x in KB ['Vacation in Spain [Electronic resource]'. - Mode
of access: http://travel-world.pp.ua/ '] .isReference ():
print x.name + '(' + x.subjName, x.propName, x.objName + ') |'

The proposed method for constructing knowledge bases
and expert systems in Python has advantages over existing
ones. The main advantage is that the developer has access to all
functions of the Python language. By expanding the
functionality of the system, there is no need to invent another
special language for describing the knowledge and query
language for them. Thanks to the versatility of Python, the
knowledge base is flexible for change; there is an easy way to
improve classes, attributes, outbound rules and queries. These
principles can be used to develop a full-fledged expert system
in service delivery systems.

REFERENCES

[1] Subbotin S.O. Presentation and processing of knowledge in systems of
artificial intelligence and decision-making support: a manual CS.
Zaporizhzhya: ZNTU, 2008. - 341 p. [in Ukrainian]

[2] Rybina G.V. Fundamentals of the construction of intelligent systems -
Moscow: Finance and Statistics, INFRA-M, 2010. - 432 p. [in Russian]

[3] Beatles D. Python. Detailed directory - SPb .: Symbol-Plus, 2010. - 864
p. [in Russian]

[4] Lutz M. Programming on Python - SPb .: Symbol-Plus, 2002. – 1136.
[in Russian]

