
International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-49

Quantum Computing.

II.Quantum Computer Languages

Ivan Bolesta

dept. of Electronics and Computer Technologies

Ivan Franko National university of Lviv

Lviv, Ukraine

bolesta@electronics.lnu.edu.ua

Oleksii Kushnir

dept. of Electronics and Computer Technologies

Ivan Franko National university of Lviv

Lviv, Ukraine

alex.kuschnir@gmail.com

Serhiy Velhosh

dept. of Electronics and Computer Technologies

Ivan Franko National university of Lviv

Lviv, Ukraine

velgosh@electronics.lnu.edu.ua

Yuriy Furgala

dept. of optoelectronics and Information Technologies

Ivan Franko National university of Lviv

Lviv, Ukraine

yuriy.furhala@lnu.edu.ua

Abstract—The programming languages that can be used to

write the program code when using quantum computers are

reviewed. The prospects of using such languages from the point

of view of integrating them into software complexes that are

convenient for the developer are discussed.

Index Terms—qubits, quantum logic elements, quantum

circuits, quantum languages, quantum computer.

I. INTRODUCTION

The theoretical foundations and basic principles of

quantum computers have been formulated long ago [1].

Therefore, it is not surprising that the development of proper

programming languages began to take place at the beginning

of the computer era. Therefore, despite the lack of real-world

devices that carry out quantum computing, programming

languages for quantum computers and emulators for their use

have been developed for 30 years. Therefore, during this time

many defects in this area have been created that have different

properties and principles of use. Due to the peculiarities of the

functioning of modern quantum computers, it is impossible for

them to directly use conventional classical programming

languages. However, the very quantum computer is not

enough for common tasks that are now solved easily on

ordinary computer systems. Therefore, at this stage of

development, it is expedient to use quantum computers as a

co-processor to a large data center. This will allow it to be

used in a cloud service only for specific specific tasks.

II. QUANTUM COMPUTER LANGUAGES

The programming languages for development under
quantum computers should be with a classic syntax,
understandable to the modern developer, but with built-in

capabilities of setting the initial values of qubits and using a
set of gates.

Another important parameter of quantum programming
languages is the existence of a full-fledged quantum computer
emulator for this language. Testing the code with the help of
an emulator allows you to run a real computer already
working code, and debug it on the emulator. In addition,
emulators allow you to check the states of qubits at any time,
which is impossible on a real device. However, of course, the
emulator does not have an acceleration of quantum
parallelism.

Despite the fact that there are not so many working
quantum computers and access to them is limited (with the
exception of the IBM Q Experience [2] program, there are
already quite a large number of quantum programming
languages. There are two groups of quantum programming
languages: imperative quantum programming languages and
functional quantum programming languages. The paradigm of
imperative programming, in which the process of obtaining
the results is described as a sequence of instructions for
changing the state of the program, is close to the physical
work of the quantum computer, in which we can set the initial
values of qubits, act on the sequence of gates and obtain the
result. That is so-called “pipe-filter” architecture. Therefore,
the quantum code can be exclusively consistent, without
branching and cycles. The most famous representatives of this
group are QCL [3], LanQ [4], and OpenQASM. On the other
hand, the paradigm of functional programming is more
familiar to modern developers and more user-friendly. This
group includes LIQUi, Q#, Quipper, and Python QISKit.

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-50

Quantum Computation Language (QCL) was created by
Bernhard Omer in 1998, although language development
continues to this day. Language has an emulator that allows
you to run quantum programs on a classic computer.

LanQ is a quantum computer science research project.
This quantum programming language designed to support the
parallel execution of several processes. The source code is
distributed under an open GNU GPL license. This program
uses a Java machine and a required Java version, at least 1.5.0.
All required libraries are distributed in the lanq.jar file. The
syntax of the LanQ language is almost entirely taken from C
language.

Open Quantum Assembly Language (OpenQASM).
The OpenQASM source code was released as part of the IBM
Quantum Information Software Kit (QISKit) software for use
with quantum computing platform Quantum Experience.
Therefore it has not only a quantum emulator (up to 32 qubits)
but also the ability to launch the real-world platform of the
IBM Q. OpenQASM has common features with specialized
programming languages (such as Verilog) used to describe the
structure and behavior of electronic circuits.

LIQUi (Language-Integrated Quantum Operations)
The LIQUi platform was created by Quantum Architectures
and Computation Group in the Microsoft Research project and
includes a programming language, optimization algorithms,
and several quantum simulators. LIQUi can be used to convert
a quantum algorithm written in the form of a high-level
program in the language of F# from the .NET Framework
family in low-level commands for a quantum computer.

LIQUi allows you to simulate up to 30 qubits per station
with 32 GB of RAM. The platform can be used to define,
execute and display in different graphic formats of quantum
circuits. With LIQUi you can simulate simple quantum
teleportation, the Schore factorization algorithm, quantum
associative memory, quantum linear algebra.

Quipper. This language was created by a group of authors
led by Peter Selinger. Quipper is designed for the same
programming tasks as the QCL, but has a different structure
and appearance. Language is implemented as an extension of
Haskell, which uses a functional rather than imperative way of
expression.

Fig. 1. A main view of the editor of the quantum scheme of IBM Q Experience project.

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-51

Q# is a subject-oriented programming language that is
used to express quantum algorithms. It was first released by
Microsoft as part of the Quantum Development Kit.

During the Ignite conference on September 26, 2017,
Microsoft announced plans to release a new programming
language specialized in quantum computers. On December 11,
2017, Microsoft released Q# as part of the Quantum
Development Kit.

Q# is only available as a standalone download to Visual
Studio. The Quantum Development Kit comes with a quantum
simulator that can execute programs written in Q#. To activate
the same quantum simulator, you must use the “shell”
program in any other programming language of the .NET
family.

In Q#, qubits are executed in the form of topological
qubits. The Quantum Development Kit quantum simulator is
capable of generating up to 32 qubits on local computer or 40
qubits on Azure cloud.

III. GRAPHIC QUANTUM DESIGN

Another approach to developing programs for quantum
computers is graphic design, writing of ready-made schemes
in a special editor (fig. 1).

The editor runs in the browser window and also has the
ability to edit the text of programing code in the language of
OpenQASM.

On the right side of the schema creation area is a set of
possible gates (fig. 1). The result of the program can be
obtained from both the simulator and the real quantum
computer.

The limitation for an ordinary user is the ability to work
with only five qubits.

Thus, a mathematician or a physicist who understands the
principles of the work of quantum computers (subject area),
but can’t write a program code independently, can easily
develop a project of quantum computing in such an editor.
This significantly reduces the required input level for the
developer.

IV. SCHEME OF QUANTUM COMPUTER USE

Quantum computers have greater efficiency in using for
some tasks, but for ordinary daily tasks, their use is not
feasible. An efficient scheme is the use of a quantum compiler
as a cloud service for specific tasks of decryption and
simulation. Then there is the following scheme of use (Fig. 2).

Then, any user of the service will be able to launch a
quantum code from user’s device through the cloud. Such a
cloud should consist of a classical computer that manages and
accepts quantum data. This allows you to enjoy all the benefits
of quantum acceleration in the existing infrastructure.

Fig. 2. Scheme of Quantum Computer use.

V. CONCLUSIONS

Despite the recent appearance of real quantum computers,

there is already a large number of programming languages for

them. Some languages come in large complexes, which also

have emulators that can help future developers.

The current development of technology dictated the

scheme of using a quantum computer as an application of

cloud-based service. The first such system already exists and

runs in test mode.

REFERENSES

[1] A. Einstein, B. Podolsky, N. Rosen “Can quantum-mechanical
description of physical reality be considered complete?” Phys. Rev. V.
47, 1935, pp. 777–780.

[2] “IBM Makes Quantum Computing Available on IBM Cloud to
Accelerate Innovation” https://www-03.ibm.com/press/us/en
/pressrelease/49661.wss

[3] B. Omer “QCL - A Programming Language for Quantum Computers,”
http://tph.tuwien.ac.at/~oemer/qcl.html

[4] H. Mlnařík. “LanQ – a quantum imperative programming language,”
http://lanq.sourceforge.net/

