
International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-65

Creating a Face Editor Using Kinect 2.0

Grabovskyi V. A.

Faculty of electronics and computer technologies

Lviv Ivan Franko National University

Lviv, Ukraine

volodymyr.grabovskyi@lnu.edu.ua

Martynovych O.I.

Faculty of electronics and computer technologies

Lviv Ivan Franko National University

Lviv, Ukraine

olehmartynovych13@gmail.com

Abstract—This paper presents the results of the creation soft-

ware on Kinect 2.0 basis that is intended to develop a 3D model of
the face, simulate various situations and problems that arise dur-
ing its creation, and consider some tools and methods for their
solution. The possibility of correct setting of the original face im-
age to its 3D model and the factors influencing the accuracy of this
process are analyzed.

Index Terms—Face editor; 3D Face; Kinect 2.0; Kinect X-Box

One; XAML

I. INTRODUCTION

Today, face detection is very relevant. In many intelligence
systems that use face identification, face recognition algorithms
are used for a photo. Face Recognition is currently one of the
most popular methods of biometric identification. Facial fixa-
tion is now as simple as photographing a person's face.

However, in order for a photo for a 3D face image to be
useful for recognition, certain features of the face must be fol-
lowed. The following requirements must be met: the face must
be fixed in the frontal form; the image must not be stretched
unevenly; the face should be evenly lit; the face should be in a
state of neutral expression with open eyes and closed lips. Pho-
tos that match these features will qualify as matching photos
that can be registered.

One of the main tasks facing the face recognition system is
the complexity of getting good frontal images. The camera
should be able to get the full front view of the object. Neverthe-
less, people have different growths, as well as different forms
and features of the face. Therefore, the camera should be able
to be positioned at any angle, so that the photo is not perfectly
frontal [1].

Matching 3D faces for recognition is a complex task caused
by the presence of expression variations, missing data and ex-
haustive values. A lot of attention is paid to solving this prob-
lem, as evidenced by numerous publications in recent years [2-
6]. The authors are used different methods and algorithms to
create 3D models of the person whose main purpose is to get
such a 3D image that is as much as possible consistent with the
real person and was convenient at work.

II. METHODS AND TECHNOLOGIES

In this paper are described the technologies used to create

the 3D face creation tool – Kinect 2.0 [7, 8], AFogre.NET,

OpenCV HaarClassifier, WPF – as well as classes and librar-

ies of the .NET platform for working with photos and media.

Even with the help of a large technology stack, creating a real-

istic 3D model of the face model is not a trivial task.
With the launch of the Kinect X-Box One, developers have

the right technology to create a real 3D model of a person
without any difficulty. The Kinect 2.0 sensor is a high-tech
hardware equipped with a 1920×1080 Full-HD camera, which
takes photos of good quality. There is also an infrared volume
sensor that can output a 512×424 bulk image. Information from
this sensor is probably the best currently available now. It is
also possible to capture images from the video. Requirements
for video use are fairly standard – 30 frames per second.

However, there are other options for image registration (al-
so at 30 frames per second), such as HD Face, which is one of
the most advanced faces tracking library out there. This tech-
nology not only does it detect the human face, but it also allows
to access over 1,000 facial points in the 3D space in real-time
within a few milliseconds

Kinect 2.0 uses a set of standard reference triangles with
2630 triangles. Their use leads to the fact that the model for the
face will look really realistic. The indices of triangles that de-
termine all surfaces in the face model are the same for all face
models created by Kinect 2.0. The Kinect SDK 2.0 sensor [7]
provides the coordinates of the triangles.

Each face in the HD Face has 1347 characteristic points.
Kinect 2.0 uses a set of standard reference triangles with 2630
triangles to build a face model. Their use leads to the fact that
the model for the face will look really realistic. The indices of
triangles that determine all surfaces in the face model are the
same for all face models created by Kinect 2.0. The coordinates
of the triangles are provided by the Kinect SDK 2.0 sensor [7].

Due to the large variety and unique features of individual
faces, it is impossible to simulate the perfect model for each
person. With the HD Face API, the ability to choose the most
common forms of personality, such as: generic, round, broad,
long, oval-wide, oval is implemented. There are defined also 5
key points for each face: the right and left eyes, the tip of the
nose, the mouth and the chin. The models differ in their vol-
ume, the position of the key points and the distances between
them.

A special algorithm for determining the distances between

the key points of the image is used to provide that the face im-

age is correctly fitted to the 3D model. The algorithm can be

described by the following steps:

1. Find the distance between the eyes of the face image, which

is imposed on the 3D model.

2. Find the distance between the eyes on the 3D model of face

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-66

image.

3. Find the distance from the tip of the nose to the middle of

the eye-connecting line for the image of the face that will

overlap on the 3D model.

4. Find the distance from the tip of the nose to the middle of

the eye-connecting line for the 3D model of face image.

5. Stretch horizontally the image of the face that will be im-

posed on the 3D model, based on the coefficient obtained

by dividing the distance defined in 1 to a distance defined

in 2.

6. Stretch vertically the image of the face that will impose on

the 3D model, based on the coefficient obtained by dividing

the distance defined in 3 to a distance defined in 4.

7. For a stretched image obtained using application 6, find the

vertical distance from the tip of the nose to the upper lip.

8. Find the vertical distance from the tip of the nose to the

upper lip for the 3D model of the face.

9. Stretch (or compress) vertically according to the coeffi-

cient, obtained by dividing the distance defined in 8 to a

distance defined in 7, the image of the face that will im-

posed on the 3D model.

10. For the image thus obtained, find the vertical distance from

the upper lip to the chin.

11. For the image of the face that will be imposed on the 3D

model find the vertical distance from the upper lip to the

chin.

12. Final step: Stretch the image (or compress it) vertically by

the coefficient obtained by dividing the distance defined in

10 to a distance defined in 11.

Now points of the eye will be aligned. However, for some
face models, the resulting new image can be significantly de-
formed. When impose to a 3D model, this image should be
stretched or compressed, depending on how the face shape on
the overlay image matches the 3D model of the face to which
the image is superimposed.

To estimate the quality of the fitting, a method based on
"tensile coefficients" is used. The names of the coefficients are
determined by the corresponding key points of the image that
will overlap on the 3D model of the face. Their using provides
stretching of the image on a number equal to the value of this
coefficient. For the above-mentioned key points of the face
there are four tensile coefficients that are responsible for the
distance:

k1 – from the middle of the right eye to the middle of the
left eye;

k2 – from the tip of the nose to the centre of the eye;
k3 – from the tip of the nose to the upper lip;
k4 – from the upper lip to the chin.

The ratio between the coefficients k1 and k2 is called the
"eye-nose" error and is responsible for the area in the image
from eye to nose. The coefficient k3 is called "nose-mouth"
error and is responsible for the image area from the nose to the
mouth. The coefficient k4 (the so-called "mouth-chin" error)
corresponds to the area of the image from the mouth to the
chin.

The values of the corresponding coefficients for the overlay
image and the values of the coefficients of the model 3D face
image should be approximately equal to each other (if the coef-
ficients are similar the areas represented by this coefficient in
the image is well imposed on the face model). The ratios of the
corresponding distances (of the coefficients that were found by
the above-described algorithm for finding the distances be-
tween the key points in the image) for the overlay image and
for the 3D model to which this image is superimposed will
show how well the image fits around this face model and how
much it needs to be stretched or compressed. A result for which
the ratio of the coefficients for the overplayed image to the
corresponding coefficients of the 3D model will be equal to or
close to one will be considered good. If the corresponding val-
ue of this ratio is greater than one, then the image of the face
that fitted to this 3D model needs to stretch on this value, and if
smaller - to compress it.

The correction of these deviations must be made using cer-
tain weighting factors. Since the stretching of the image taking
into account the eye-nose error occurs throughout the face, the
weight factor for it is assigned a higher. On the other hand,
stretching the mouth-nose involves stretching the nose down,
and stretching the "mouth-chin" involves only stretching down
the mouth. Accordingly, he is assigned a weight less than an
"eye-nose" error, but more than a "mouth-chin" error. The cur-
rent weight ratio is 4 for the “eye-nose”, 2 for the “nose-
mouth” and 1 for the "chin-mouth". Ideally, for a good fitting
face to model, a stretched image of the face should not be de-
formed.

3D model, created in the HD Face, can be manufactured by
.NET Framework classes. For example, "System.Win-
dows.Media.Media3D" using MeshGeometry 3D for simula-
tion, "Viewport3D" – for viewing in the "WPF", "Perspecti-
veCamera", "AmbientLight" and "DirectionalLight" windows –
for visualization of the model under different lighting condi-
tions and viewing angles. "AForge.NET" classes provide filters
for processing the original image, which allows changing its
brightness and contrast. OpenCV provides "HaarClassifier" to
selection facial and eye contours from input images [9].

".NET.Drawing" classes are used to handle GDI+
(Graphics Device Interface) images, one of the three main
components that, together with the kernel and the Windows
API, are basic for the Windows interface. The "Sys-
tem.Windows.Media" classes are used for presentations in the
WPF window (Windows Presentation Foundation – the API for
the graphical user interface and part of the .NET Framework)
[10].

III. REALIZATION

The project is elaborated on Microsoft .NET Framework
4.5 and is supported by Windows. The logic of the program is
implemented using the C # programming language. Microsoft
Visual Studio 2017 was used to create the project. To work
correctly, you need to install .NET Framework 4.5 or higher.
The program interface is implemented using WPF and Sys-
tem.Windows.Media classes.

The main file of the program is MainWindow.xaml, which

implements the functionality of the main window of the pro-

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-67

gram. Window 1-7.xaml files implements interfaces of the aux-

iliaries programs for working with images and layouts of faces.

Implementation of the program interface is done using the

XAML Markup Language. At the beginning, the XAML file

identifies the top-level element of the Window – the program

window in which the Grid element is defined, which is a top-

level container and in which other elements can be added. Each

element can have certain attributes with their properties, which

allow you to change the size, background, position of the ele-

ments of the window. Menu items and their properties describe

in <ContextMenu> and <MenuItem>. The Click property spec-

ifies the names of event handlers that implement the functional-

ity of the interface elements.

The window of the main interface of the program is shown

in Fig. 1

The program has the ability to choose six forms of the face:
generic, round, wide, long, oval-wide, oval. The templates for
the corresponding 3D faceplates are located on the right panel
of the developed interface (1 in Figure 1). Above it are located
two switches (2 in Fig. 1), which allow to show or close the
grid of face model.

Fig. 1. General view of the program interface:

1 – panel of 3D faces layouts ; 2 – grid face display switches; 3 – cube –

the basis for 3D faces layouts; 4 – adjustment sliders of viewing ; 5 – "Re-
set" button; 6 – "Snap" button ; 7 – panel of face model images; 8 – an el-

ement of opening and downloading images; 9 – RGB colour palette.

In the centre of the workspace there is a cube (3 in Fig. 1),
which is the basis for the 3D layout of the face and allows to
move and rotate the face layout in 3D space. A change in the
position of the cube (facial look at different angles) is per-
formed using the view adjustment slider (4 in Fig. 1).

When choosing any of the six shapes of the face in panel 1
in Fig. 1, the layout of the face corresponding to this choice is
loaded. To return all the default positions and camera rotation
settings, you need to click on the "Reset" button (5 in Fig. 1),
or double-click on the rendered face model.

The starting element for fitting is a photo of the face model,
which can be saved with the "Snap" button (6 in Fig. 1). It is a
3D face, stored in memory and displayed in the vertical panel
on the left (7 in Fig. 1). The last 6 shots are displayed here.
You can scroll through the rest of the saved images using the
mouse wheel. By clicking on the selected image, you can view
it or save it to a file in the Snap project folder.

In the upper left corner (8 in Figure 1) there is an item that
allows you to open and download 3D faces. The image can also
be downloaded, placed in the centre of the workspace and min-
imal processed by the RGB colour palette (9 in Figure 1),
which also shows the colour code in hexadecimal format and
changes in brightness and contrast.

When the face image is selected and loaded, the program

will try to find the eyes (Fig. 2). Eye detection is done using the

HaarClassifier of OpenCV. The red circular areas on the image

are the key points of the face fitting process. Also, a magnify-

ing glass will appear that will show the large picture of the se-

lected area in the face image (1 in Fig. 2).

Fig. 2. Assigning of key points on a face image

1 – magnifying glass; 2 – check box to ensure symmetry of the eyes;

3 – "Best fit" button; 4 – "Update" button.

To impose an image on a face model, you need to bind it to
some invariant points on the faceplate. To precisely place key
points, you need to select them, and then use the magnifying
glass to view the converged image of the selected area and ac-
curately move the key points to the desired part of the image.
You can use the "Align eyes" checkbox (2 in Fig. 2) to ensure
the symmetry of the eyes. The "Best fit" button (3 in Fig. 2) is
used to get the model that is best suited for the new face, and
the "Update" button (4 in Fig. 2) – to use the current selected
face model. In the process of overlaying an image on a face
model, the program interface has the following appearance
(Fig. 3).

Fig. 3. Face image overlay:

1 – stretched image of the face; 2 – levelled fixation of the stretched
face to the model; 3 – "Fitting error".

After updating the model with a new face, one should keep in
mind the following:

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-68

• The image at the upper right (1 in Fig 3) is a stretched
face that will be used as a texture.

• The image at the bottom right (2 in Fig. 3) is a flat-
tened of stretched face fixation to the model.

• "Fitting error" (3 in Fig. 3) shows 4 parameters: <eyes,
nose> <nose-mouth> <mouth-chin>, <total error>.

After attaching of the face, you can move and rotate the

camera to get the desired look. The "Snap" button saves 3D

facial image in memory. After saving the image is available on

the left panel (7 in Fig. 1). As a result, the image fitted on the

face model, will look like this (Fig. 4):

Fig. 4. Imposed image on the face model

IV. EXAMPLE OF USING

One of the main problems in solving the problem of creat-
ing a 3D face image is the error in overlays of a face image on
a 3D model. The problem is that the face of each person has its
own peculiarities concerning the shape of the face and is im-
possible of perfectly simulating the universal 3D face model
that will fit each face image. With the above-described face
wrapping algorithm and use of the entered general error of the
fitting, you can choose a 3D face model that is best suited for
the provided face image.

Fig. 5. Configuration of the fitting image to the 3D face model

Fitting error compensation will help to adjust the position
of the facial points. Let's consider the process of reducing it on
the example (Fig. 5). In this case, the "eye-nose" error is -1, the
"nose-mouth" error is 16, the "mouth-chin" error is -1 and the
total error (calculated with the appointment of weights: 4 for
the "eye-nose", 2 for "nose-mouth" and 1 for "mouth-chin") -

36. In order to compensate for the negative "eye-nose" error,
you need to bring the key points of the eyes closer together or
lower the key point of the nose. To compensate for the positive
"eye-nose" error, you must move the key points of the eye fur-
ther apart or move the key point of the nose above. To com-
pensate for the negative "nose-mouth" error, you need to move
the key nose and mouth points apart. To reduce the positive
value of this error, you need to move these key points closer
together. To compensate the negative "mouth-chin" error, you
need to increase the distance between the corresponding key
points in the image, and the positive one - to reduce the dis-
tance between them.

Correct moving the key points of the image to compensate
for the errors of fitting it to the 3D model will allow to get an
image of the face with proportions close to the original one.

V. CONCLUSION

On the basis of Kinect 2.0 a software has been created that

analyzes the possibilities of creating a three-dimensional face

model, simulated the situations and problems that arise during

this process, as well as examines some tools and solutions for

them solving. Special errors rates are used to increase the cor-

rect installation of the initial image to the 3D layout of the face.

Correctly using the errors values when fitting a face image to

the 3D model and compensating for their size, we can choose

the optimal 3D face model for a particular person's image.

However for perfectly fitting of an image to its 3D model, a

unique 3D face model is required for each individual.

REFERENSES

[1] “Kinect for Windows SDK 2.0. Getting started” [Electronic source]. –
Available from:https://msdn.microsoft.com/en-us/library/hh835354.aspx

[2] D. Smeets, P. Claes, D. Vandermeulen, J. G. Clement. “Objective 3D
face recognition: Evolution, approaches and challenges”, Forensic
Science International, 2010, 201, pp. 125–132.

[3] D. Smeetsa, J. Keustermansa, D. Vandermeulena, P. Suetensa.
“meshSIFT: Local Surface Features for 3D Face Recognition under
Expression Variations and Partial ,Computer Vision and Image
Understanding, 2013, 117, Is. 2, pp. 158-169.

[4] N. Smolyanskiy, .C. Huitema, L. Liang, S. E. Anderson “Real-time 3D
face tracking based on active appearance model constrained by depth
data”, Image and Vision Computing, 2014, 32, pp. 860–869.

[5] G. Hu, Fei Yan, J. Kittler, W. Christmas, Chi Ho Chan, Z. Feng, P.
Huber. “Efficient 3D morphable face model fitting”, Pattern
Recognition, 2017, 67, pp. 366-379.

[6] Luo Jiang, Juyong Zhang, Bailin Deng, Hao Li, Ligang Liu. “3D Face
Reconstruction with Geometry Details from a Single Image”, Accepted
by IEEE Transactions on Image Processing, 2018.

[7] M. Rahman.“Beginning Microsoft Kinect for Windows SDK 2.0 :
Motion and Depth Sensing for Natural Interfaces”, Apress, 2017.

[8] “Kinect for Windows Software Development Kit” [Electronic source]. –
Available from: https://www.techspot.com/drivers/driver/file/

[9] “WPF overview” [Electronic source]. – Avaible from: https://www.tutori-
alspoint.com/wpf/wpf_overview.htm

[10] A.Trojelsen. “Pro C# 5.0 and the .NET Framework 4.5”, Sixth
Edition, Apress, 2012.

