
International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-155

Multi-steps Methods for Calculating the Phase

Portrait of the Incommensurate Superstructure with

the Lifshitz's Invariant

S. Sveleba, I. Katerynchuk, I. Kunyo, I. Karpa

Ivan Franko National University of Lviv

107 Tarnavsky St.,

UA–79017 Lviv, Ukraine

incomlviv@gmail.com

Abstract—Two multi-steps methods: Adams and BDF was

applied for calculation of phase portrait of incommensurate

superstructure with the Lifshitz's invariant. The Python

language was used to create the correspond application. The

result of numerical experiments was gives an excellent result in

the calculation of complex dynamic systems.

Index Terms—multi-steps methods; Python language;

incommensurate superstructure; Lifshitz's invariant; phase

system portrait.

The best accuracy of derivatives approximation is obtained
by using information with a large number of points. In this
case, for the calculation of the value yi + 1, we use the results of
not one, but a n of the previous steps, in other words we use the
value of the function in yi-n + 1, yi-n + 2, ..., yi prevision points. So
in this case the n-steps method is obtained.

There are explicit and implicit methods. A good result can
be obtained using a combination of the explicit and the implicit
method. They are called the methods of forecasting and
correction. Each step consists of two stages and is calculated by
multi-step methods. Using the explicit method (forecast) for
the known values of the function in the previous nodes is the
initial approximation in the new node. Using an implicit
method (correction), the result of iterations is the correction of
this value.

In explicit algorithms for calculating the value of a function
at the current stage, we need the values of the function and its
derivatives from the previous steps, and in implicit methods,
this derivative must be predicted in the current step with the
help of additional algorithms, which makes them less
economical. However, the area of the stability zone for explicit
methods is always less than that for the implicit, but when we
increasing the step in explicit methods, they increases, and in
the implicit - decreases [4]. Implicit and multi-step methods, as
a rule, do not require setting the value of a step, it adapts
automatically for reasons of accuracy. Methods of the second
and higher orders are nonlinear, moreover, the higher order of
accuracy needed more additional components in the formula of
the method need to be calculated [1, 2].

In the simulation programs, the explicit one-step Runge-
Kutta step methods that are multi-stage are widely used and
perform several intermediate steps. After that, the basic stage is
carried out, which allows you to increase the accuracy of the
solution, using only the information from one current step.
Algorithms with prediction-correction of the second and higher
orders perform two calculations of functions at each step, with
the usual use of the explicit Adams-Bashfort method, and as
the corrector in the implicit Adams-Multon. The multifaceted
(linear) methods (Gir’s, Adams-Bashfort, Adams-Multon) use
information from previous steps. A separate case of linear
methods is the explicit and implicit Euler method, which can
be taken as Adams-Bashfort and Adams-Multon respectively in
the first order with one step. Since there is a contradiction
between the criteria of stability (explicit, implicit) and accuracy
(order of the method), accuracy and economy (the cost in the
machine time), the problem of optimal choice of integration
method and modeling parameters, especially for rigid models
[1], with a large scale of constant integration . The paper [3]
analyzes the main methods that are widely used in the
simulators and sorts them in accordance with the
aforementioned criteria and areas of application. The presented
methods can be grouped as follows.

1. Methods based on the Runge-Kutti algorithm: RK2 and
RK4 are two stages with the calculation of the intermediate
point [2]; RKF45 and Dormand-Prince (DOPRI853) require 4
to 6 intermediate calculations of the function [4].

2. Methods based on the formula of back differentiation:
the Gyr’s method (BDF) of variable order with the first order
of derivatives [4, 5], which launches in each step the iterative
process of linearization by simple iterative methods, Bridene,
Newton-Raffson; MeBDFi is a modified extended back
differentiation formula [4].

3. Comprehensive algorithms: VODE and Vode Adams,
consisting of a multi-steps implicit Adams-Moulton method of
variable order and step, and multi-steps BDF of variable order
and step. The resulting nonlinear system of algebraic
equilibrium is solved by the iterative linearization method at
each step of integration [1].

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-156

Thus, the most effective method for calculating systems of
second-order differential equations is the multi-steps implicit
Adams-Multon method of variable order, and the multi-steps
method of BDF of variable order .

Therefore, the purpose of this work is to construct phase
portraits for an incommensurate superstructure described by
two differential equations of the second order [6]:

 () () 01cos1 123 =+−′+′−+−′′ − ϕϕϕ nKRRTRR n , (1)

0sin)

2
(2 2 =+−′

′
+′′ − ϕϕϕ nKR

T

R

R n

.
(2)

here

()2

1

r

T

γ

σ
=

, 2
12

222

nnn

unrK
−−−

= ω — dimensionless

parameters, n — an integer characterizing the potential

symmetry, and dimensionless variables
R

u

r 2
1

2

=η , ξ
γ 2

1

=
r

z

, and checking the effectiveness of multi-steps Adams-Multon
methods and BDF for solving the differential equation systems.

In this work, the construction of phase portraits of nonlinear
dynamic systems, in the Python software environment using
the scipy library. In this library, the class scipy.integrate.ode (f,
jac = None) is the common interface class to numeric
integrators. This class solves the system of equations ((y '(t) =
f (t, y)) with jac = df / dy [7]. Using the set_integrator method,
the integrator "vode", which is a common solver of the
differential equation, was chosen from the implementation of a
fixed-leading coefficient. In the set_integrator method of the
ode class, the integrator accepts the following parameters:

1. atol: floating or definite accuracy (in this work it was
chosen equal to atol = 1E-6 ÷ -12)

2. rtol: relative permissible parameter (rtol = 0);

3. method: '' adams '' or 'bdf'. In the calculation, the solver
was used as "Adams" (for non-hard systems) and "BDF" (for
hard systems);

4. with_jacobian: bool this parameter was entered when the
Jacobian function was not considered and did not indicate that
the Jacobian was grouped.

The import block looks like this:

from scipy.integrate import ode

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

From the scipy library, we call the common interface class
to numeric integrators - scipy.integrate.ode (f, jac = None).
Determine the function that is responsible for calculating the
system of differential equations:

def f(t, y):

 c0=1.0

 c1=0.7

 c2=4

 y0, y1, y2, y3, = y

 return [y1,y0**3-(1+c0*y3-y3**2)*y0+c1*(y0**(c2-
1))*(1+np.cos(c2*y2)),y3,-(y1/y0)*(2*y3-c0)-c1*(y0**(c2-
2))*np.sin(c2*y2)]

The arguments of the function are:

y — matrix of the state of the variable

t — time

с0, c1, с2 — parameters of the differential equation (may
be any number)

In this case с0=Т, с1=K, с2=n. The function returns the
matrix of derivatives. Next, the implementation of the function
is obtained for a solution of a system of differential equations
with given initial conditions.

r = ode(f).set_integrator("vode", method="BDF", order=10,
rtol=0, atol=1e-6, with_jacobian=False)

y0 = [0.3,0.0,0.0,0.75]

r.set_initial_value(y0, 0)

T =300

dt = 0.0004

y = []; t = []

The Jacobi matrix or the Jacobian of a given system of
functions is a matrix that is formed by partial derivatives of
these functions for all variables. The value of this matrix
should not exceed the specified accuracy value of the
calculation. Failure to execute this condition returns the value
to a repeated iterative loop. To implement a phase portrait, it is
necessary to carry out a solution of a system of differential
equations with different initial conditions. To implement, we
also need an array of values of calculated functions.

while r.successful() and r.t <= T:

 r.integrate(r.t + dt)

 y.append(r.y); t.append(r.t)

y=np.array(y)

fig, ax = plt.subplots()

fig.set_facecolor('white')

ax=Axes3D(fig)

plt.xlabel('R')

plt.ylabel('dR/dx')

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-157

def f(t, y):
 c0=1.0 #"c0=1.0;c1=1.5";

"c0=0.050;c1=1.5";"c0=0.050;c1=0.15";
"c0=0.05; c1=0.0015"

 c1=1.59
 c2=4

 y0, y1, y2, y3, = y
 return [y1,y0**3-(1+c0*y3-

y3**2)*y0+c1*(y0**(c2-
1))*(1+np.cos(c2*y2)),y3,-(y1/y0)*(2*y3-c0)-

c1*(y0**(c2-2))*np.sin(c2*y2)]
#from scipy.integrate import ode
r = ode(f).set_integrator("vode",

method="adams",order=10, rtol=0, atol=1e-6,
with_jacobian=False)

y0 = [0.3,0.0,0.0,0.75]
r.set_initial_value(y0, 0)

T =300
dt = 0.0004

y = []; t = []
while r.successful() and r.t <= T:

 r.integrate(r.t + dt)
 y.append(r.y); t.append(r.t)

a

def f(t, y):
 c0=1.0 #"c0=1.0;c1=1.5"

;"c0=0.050;c1=1.5";"c0=0.050;c1=0.15";"c0=0.05;

c1=0.0015"
 c1=1.605
 c2=4

 y0, y1, y2, y3, = y
 return [y1,y0**3-(1+c0*y3-

y3**2)*y0+c1*(y0**(c2-
1))*(1+np.cos(c2*y2)),y3,-(y1/y0)*(2*y3-c0)-

c1*(y0**(c2-2))*np.sin(c2*y2)]
#from scipy.integrate import ode

r = ode(f).set_integrator("vode", method="BDF",
order=10, rtol=0, atol=1e-6,

with_jacobian=False)
y0 = [0.3,0.0,0.0,0.75]

r.set_initial_value(y0, 0)
T =300

dt = 0.0004
y = []; t = []

while r.successful() and r.t <= T:
 r.integrate(r.t + dt)

 y.append(r.y); t.append(r.t)
y=np.array(y)

b

plt.title("Phase system portrait")

plt.plot(y[:,0],y[:,1],y[:,3], linewidth=1)

plt.grid(True)

plt.show()

Fig. 1 and Fig. 2 show the results of the calculation and

Figure 1. Phase system portrait in coordinates R, dR/dx, dφ/dx provided:

R0=0,3; R'=0; φ0=0; φ'=0,75 а) and the part of the code responsible for the

calculation method (Adams) and the initial conditions b).

construction of phase portraits of a given system of differential
equations obtained by implicit, multi-steps, variable-step
calculation for soft systems by the Adams method in Fig. 1,
and for hard systems by the BDF method in Fig. 2. The

obtained phase portraits are qualitatively similar, only the value
of the coefficient c1 differs, at which the system is still stable.

Figure 2. Phase system portrait in coordinates R, dR/dx, dφ/dx provided:

R0=0,3; R'=0; φ0=0; φ'=0,75 а) and the part of the code responsible for the
calculation method (BDF) and the initial conditions b).

The peculiarity of these methods is that the solution at the
next point depends on the solution in several previous points.
To calculate the considered system of differential equations,
this method is appropriate, since at this point it is necessary to
calculate the quantities, namely dR/dx, dφ/dx, d

2
R/dx

2
, d

2
φ/dx

2
.

Also phase portraits for the considered calculation methods
have a different values of a fixed step was calculated. At values
of step> 0.01 monotonous behavior of attractors is observed.
Under these conditions there is a slight difference in the
received phase portraits by different methods. For the Adams
method, there have at greater number of bifurcations than for

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-158

the DBF method. With the subsequent decrease in the value of
the step, this difference disappears.

For hard and soft systems, the accuracy of the calculation is
significant. For Adams and DBF methods, the accuracy of the
calculation can either be by default or be given. Fig. 3 shows
the calculated phase portraits of the research system under the
condition of different accuracy values of the solution.

a

b

c

d

Figure 3. Phase system portrait in coordinates R, dR/dx, dφ/dx provided:

R0=0,3;R'=0; φ0=0; φ'=0,75 at different values of calculation accuracy atol.
 а, b – Adams method; c, d – BDF method, atol=0.1 a, c atol=0.001 b, d.

The difference between the received phase portraits is
observed only with low accuracy of calculation (atol = 0.1 ÷
0.001). Given atol> 0.1, the shape of the phase portrait is far
from ideal. In this case, the essential difference between the
forms calculated by different methods is traced. In particular,
the number of received attractors for the DBF method is greater
than they were obtained in the calculation of the system by the
Adams method. Given atol ≤ 0.001, this difference gradually
disappears. Therefore, in the study of the influence of the
stability parameter of the initial T = c0 and the parameter of
anisotropic interaction K = c1, which is described by the
Dzyaloshinsky’s invariant on the phase portraits of this system,
the accuracy of the calculation was atol ≤ 1е-6 ÷ 12.

Thus, the multi-step methods of Adams and DBF for
calculating the systems of differential equations give an
excellent result in the calculation of complex dynamic systems.
It should be noted that these methods are relevant in the study
of bifurcation processes, because they provide both high
accuracy of calculation and small value of the calculation step.

REFERENCES

[1] Pereverzjev A. V., Vasylenko O. V., Prokopenko R. V. Zapobigannja
algorytmichnyh zboi’v system ECAD, Radioelektronika, informatyka,
upravlinnja, 2006, No. 1, pp. 123–128.

[2] Dushin S. E., Krasov A. V., Litvinov Yu. V. Modelirovanie system i
kompleksov. Sankt-Peterburg, SPbGU ITMO, 2010, 177 p

[3] Vasilenko O.V., Petrenko Ya.I. Improvement of the Quality of Dynamic
Systems Modeling by Choosing Optimal Simulation Algorithms
Radioelektronika, Informatics, Management. - 2016. - No. 4. -
September 11-18. [in Ukrainian]

[4] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.
Numerical Recipes. The Art of Scientific Computing (3rd ed.).
Cambridge University Press, 2007, 1235 p.

[5] Cellier F. E., Kofman E. Continuous system simulation. Springer
Verlag, New York, 2006, 643 p.

[6] I.M. Kuno, S.A. Sveleba, I.V. Karpa, I.M. Katerynchuk
Inhomogeneous States of Thin-layer Crystals with Incommensurate
Superstructure JOURNAL OF NANO- AND ELECTRONIC PHYSICS
Vol. 10 No 2, 02026(6pp) (2018))

[7] http://man.hubwiz.com/docset/SciPy.docset/Contents/Resources/Docum
ents/doc/generated/scipy.integrate.ode.html

