
International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-163

Investigation of the Strategy of Automatic Step Size
Control for the Method Dormand-Prince of Solving

Ordinary Differential Equations
Ivan Khvyshchun

Ivan Franko National University of Lviv,
Faculty of Electronics and Computer Technologies,

Lviv, Ukraine, Tarnavskoho str 107,
e-mail: xiocompan@gmail.com

Bogdan Kutnyk
Ivan Franko National University of Lviv,

Faculty of Electronics and Computer Technologies,
Lviv, Ukraine, Tarnavskoho str 107,

e-mail: bogdankutnyk@ukr.net

Abstract—Automatic design of technical devices,

mathematical modelling of dynamical routines is important and

complex operation. This task solves the problem of behavior of

the device in time based on preset first state and internal

structure defined by mathematical model.

Index Terms—mathematical modelling, Runge-Kutta
methods, ordinary differential equations, step size control.

If the model of the device is the system of common
differential equations in normal Coushi form, then implicit or
explicit integration method is selected based on the properties
of the model [1]. One of the powerful explicit integration
method is one step multi stage method of Dormand-Prince.
Automatic selection of integration step for mathematical
model equations allows to minimize CPU consumption while
preserving the precision of calculations.

In digital analysis Dormand-Prince method is explicit one-
step multistage method for solving the systems of common
differential equations. The method belongs to Runge-Kutta
methods family. It consists of seven stages, but it uses only six
estimates of right part of the system function on the each step
of integration. It has the property “first like last”: the last stage
is evaluated the same time together with the first stage of the
next step. Six evaluations of functions are used for calculation
of current values of the solution of fourth and fifth grades.
Difference between the evaluations is named the divergence of
the solution (fourth grade).

The authors of the method had chosen their method
coefficients for minimization of divergence of solution of fifth
grade. This is the main difference between Dormand-Prince
and Felberg method. Felberg method is designed to minimize
divergence of fourth grade. This is why Dormand-Prince
method is more suitable, when the solution of higher grade is
used for continuation of integration – local extrapolation.

Dormand-Prince method is designed to have “the method
of adaptive step” – procedure choosing optimal value of step.
Each step of integration [3] provides two different values to be
compared. If these two values are greater than defined
precision, then the value of step is decreased. If the difference
is less then defined precision, the value of step is increased,
optimizing integration process.

On the k-th step of integration with Dormand-Prince
method we have the following equations.
Given y = f(t ,y) [4, 5, 6]:

k1 = h·f(tk ,yk);

k2 = h·f(tk+h/5 , yk+k1/5);

k3 = h·f(tk+3·h/10 , yk+3·k1/40 + 9·k2/40);

k4 = h·f(tk+4·h/5 , yk+44·k1/45 – 56·k2/15 + 32·k3/9);

k5 = h·f(tk+8·h/9 , yk+19372·k1/6561 – 25360·k2/2187
+ 64448·k3/6561 – 212·k4/729);

k6 = h·f(tk+h, yk+9017·k1/3168 – 355·k2/33 –
46732·k3/5247 + 49·k4/176 – 5103·k5/18656);

k7 = h·f(tk+h, yk+35·k1/384 + 500·k3/1113 +
125·k4/192 + 2187·k5/6784 – 11·k6/84);

h – value of integration step, tk – argument of function yk on k-
th integration step, k1…k7 – coefficients, used for calculation
of the next integration point. Next we calculate the point on
(k+1)-th step using Runge-Kutta method of 4-th degree of
precision:

yk+1 = yk + 35/384·k1+ 500/1113·k3 + 125/192·k4 –

2187/6784·k5 + 11/84·k6

Next is the point on (k+1)-th step using Runge Kutta
method of 5-th degree:

zk+1 = yk + 5179/57600·k1+ 7571/16695·k3 +
393/640·k4 – 92067/339200·k5 + 22/525·k6 + 1/40·k7 ,

International Scientific and Practical Conference "Electronics and Information Technologies" (ELIT-2018)

A-164

yk+1– value calculated with Runge-Kutta method of 4-th
degree on (k+1)-th step, zk+1 – value calculated with Runge-
Kutta method of 5-th degree on (k+1)-th integration step [5].

Divergence on (k+1)-th integration step is calculated as
absolute value of the difference:

Ek+1 =·│zk+1 – yk+1│.

Following we compare this value with defined precision
(by default relative error is εrel = 10–3, absolute error εtol = 10–6

correction of integration step h is done using the condition:
εn+1 ≤ max (εrel ·yk , εtol).

Correction on each step is done using the figure [2]:

hopt = ((ε ·h) / (2·│zk+1 – yk+1│))1/5·h.

ε – pre defined integration precision, h – current integration
step, hopt – optimal step for finding the next point.

Increasing the precision of absolute or relative error leads
to significant increase of CPU time needed for problem
solving. That is why in order to increase the precision of
function calculation, and to find the optimal quantity of
integration steps we propose to use correction method on the
step. We have to calculate the value of the function on the
current integration step and using the integration step divided
by two.

Local error on k-th step is evaluated as [7]:

ETi = 16 (yi (h/2) – yi (h))/15,

yi (h) , yi (h/2) – calculated values of the function using current
and divided by two value of integration step.

When the error is greater then defined value, integration
step is reduced and calculation is repeated. Using this method
allows to increase precision of function calculation and to find
the proper quantity of integration steps, but the amout of
needed calculations is increased.

In general, bigger values of integration step increase the
speed of calculation of the model, but it decrease the
precision, smaller values – vice versa. Choosing very small
values of step h leads to increase of influence of errors caused
by rounding. In method with integration step correction, the
step is changed in order to get the needed value of precision.

Dormand-Price method was developed in programmatic
complex, created in Microsoft Visual Studio 2017 using
language C#. Programmatic complex has the open
architecture, allowing to add new integration methods and new
mathematical models in normal form of Coushi.

Results of modelling can be visualized using charts of
every variable of equations of mathematical model. Statistical
data about automatic choosing of integration step value is also
outputted to the screen.

The following is the user interface of this programmatic
complex:

In order to test proposed algorithms we have chosen the
systems, mathematical models of which have different
dimensions and properties – autonomous, not autonomous,
stiff or nonstiff systems. Mathematical models where
presented in coordinate basis of state variables. Those models
correspond to normal form Coushi, that can be integrated
using every known numerical methods [1].

REFERENCES
[1] I. O. Khvyshchun, Programming and Mathematical Modeling:

Handbook – К.: Publishing House “InJure”, 2007.(in Ukrainian)
[2] On Dormand-Prince Method:

http://depa.fquim.unam.mx/amyd/archivero/DormandPrince_19856.pdf
[3] J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta

formulae”, J. Comput. Appl. Math. 1980 vol. 6, pp. 19-26.
[4] I. V. Olemskoj, Numerical method for integrating systems of ordinary

differential equations, “Mathematical Methods of Modeling and
Analysis of Controlled Processes”, 1986. pp. 157-160. (in Russian)

[5] I. V. Olemskoj, Embedded five-stage fifth-order method of the Dorman-
Prince type. “Journal of Computational Mathematics and Mathematical
Physics” 2005. vol. 45. № 7. pp. 81-1191. (in Russian)

[6] E. Hairer, S .P .Norsett, G. Wanner, Solving Ordinary Differential
Equations. Nonstiff problems. М.: Mir, 1990. (in Russian)

[7] J. R. Dormand, P. J. Prince, New Runge-Kutta algorithms for numerical
simulation in dynamical astronomy “Celestial Mech”, 1978, pp. 223-
232.

