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Abstract—Automatic design of technical devices, 

mathematical modelling of dynamical routines is important and 

complex operation. This task solves the problem of behavior of 

the device in time based on preset first state and internal 

structure defined by mathematical model. 

Index Terms—mathematical modelling, Runge-Kutta 
methods, ordinary differential equations, step size control. 

If the model of the device is the system of common 
differential equations in normal Coushi form, then implicit or 
explicit integration method is selected based on the properties 
of the model [1]. One of the powerful explicit integration 
method is one step multi stage method of Dormand-Prince. 
Automatic selection of integration step for mathematical 
model equations allows to minimize CPU consumption while 
preserving the precision of calculations. 

In digital analysis Dormand-Prince method is explicit one-
step multistage method for solving the systems of common 
differential equations. The method belongs to Runge-Kutta 
methods family. It consists of seven stages, but it uses only six 
estimates of right part of the system function on the each step 
of integration. It has the property “first like last”: the last stage 
is evaluated the same time together with the first stage of the 
next step. Six evaluations of functions are used for calculation 
of current values of the solution of fourth and fifth grades. 
Difference between the evaluations is named the divergence of 
the solution (fourth grade). 

The authors of the method had chosen their method 
coefficients for minimization of divergence of solution of fifth 
grade. This is the main difference between Dormand-Prince 
and Felberg method. Felberg method is designed to minimize 
divergence of fourth grade. This is why Dormand-Prince 
method is more suitable, when the solution of higher grade is 
used for continuation of integration – local extrapolation.  

Dormand-Prince method is designed to have “the method 
of adaptive step” – procedure choosing optimal value of step. 
Each step of integration [3] provides two different values to be 
compared. If these two values are greater than defined 
precision, then the value of step is decreased. If the difference 
is less then defined precision, the value of step is increased, 
optimizing integration process.  

On the k-th step of integration with Dormand-Prince 
method we have the following equations.  
Given y = f(t ,y) [4, 5, 6]:  

 
k1 = h·f(tk ,yk); 

 

k2 = h·f(tk+h/5 , yk+k1/5 ); 
 

k3 = h·f(tk+3·h/10 , yk+3·k1/40 + 9·k2/40 ); 
 

k4 = h·f(tk+4·h/5 , yk+44·k1/45 – 56·k2/15 + 32·k3/9 ); 
 

k5 = h·f(tk+8·h/9 , yk+19372·k1/6561 – 25360·k2/2187 
+ 64448·k3/6561 – 212·k4/729 ); 
 

k6 = h·f(tk+h, yk+9017·k1/3168 – 355·k2/33 –
46732·k3/5247 + 49·k4/176 – 5103·k5/18656 ); 
 

k7 = h·f(tk+h, yk+35·k1/384 + 500·k3/1113 + 
125·k4/192 + 2187·k5/6784 – 11·k6/84 ); 

 
h – value of integration step, tk – argument of function yk on k-
th integration step, k1…k7 – coefficients, used for calculation 
of the next integration point. Next we calculate the point on 
(k+1)-th step using Runge-Kutta method of 4-th degree of 
precision: 

 
yk+1 = yk + 35/384·k1+ 500/1113·k3 + 125/192·k4 – 

2187/6784·k5 + 11/84·k6 
 

Next is the point on (k+1)-th step using Runge Kutta 
method of 5-th degree: 
 

zk+1 = yk + 5179/57600·k1+ 7571/16695·k3 + 
393/640·k4 – 92067/339200·k5 + 22/525·k6 + 1/40·k7 , 
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yk+1– value calculated with Runge-Kutta method of 4-th 
degree on (k+1)-th step, zk+1 – value calculated with Runge-
Kutta method of 5-th degree on (k+1)-th integration step [5].  

Divergence on (k+1)-th integration step is calculated as 
absolute value of the difference: 

 

Ek+1 =·│zk+1 – yk+1│. 
 

Following we compare this value with defined precision 
(by default relative error is εrel = 10–3, absolute error εtol = 10–6 

correction of integration step h is done using the condition: 
εn+1 ≤ max (εrel ·yk , εtol). 
 

Correction on each step is done using the figure [2]: 
 

hopt = ( (ε ·h) / (2·│zk+1 – yk+1│ ))1/5·h. 

      

 
ε – pre defined integration precision, h – current integration 
step, hopt – optimal step for finding the next point.  

Increasing the precision of absolute or relative error leads 
to significant increase of CPU time needed for problem 
solving. That is why in order to increase the precision of 
function calculation, and to find the optimal quantity of 
integration steps we propose to use correction method on the 
step. We have to calculate the value of the function on the 
current integration step and using the integration step divided 
by two. 

Local error on k-th step is evaluated as [7]: 

ETi = 16 (yi (h/2) – yi (h) )/15,  

yi (h) , yi (h/2) – calculated values of the function using current 
and divided by two value of integration step. 

When the error is greater then defined value, integration 
step is reduced and calculation is repeated. Using this method 
allows to increase precision of function calculation and to find 
the proper quantity of integration steps, but the amout of 
needed calculations is increased. 

In general, bigger values of integration step increase the 
speed of calculation of the model, but it decrease the 
precision, smaller values – vice versa. Choosing very small 
values of step h leads to increase of influence of errors caused 
by rounding. In method with integration step correction, the 
step is changed in order to get the needed value of precision. 

Dormand-Price method was developed in programmatic 
complex, created in Microsoft Visual Studio 2017 using 
language C#. Programmatic complex has the open 
architecture, allowing to add new integration methods and new 
mathematical models in normal form of Coushi.  

Results of modelling can be visualized using charts of 
every variable of equations of mathematical model. Statistical 
data about automatic choosing of integration step value is also 
outputted to the screen.  

The following is the user interface of this programmatic 
complex: 

 

 
 

In order to test proposed algorithms we have chosen the 
systems, mathematical models of which have different 
dimensions and properties – autonomous, not autonomous, 
stiff or nonstiff systems. Mathematical models where 
presented in coordinate basis of state variables. Those models 
correspond to normal form Coushi, that can be integrated 
using every known numerical methods [1].  
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