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Abstract—A numerical value of the estimate of global 

discretization error is used in the simulation process of transient 

and steady-state modes in dynamic systems. This allowed the 

calculation accuracy to by increased significantly with low 

computational expanses. 
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I.  INTRODUCTION 

One of the most important characteristics that determine 

the reliability of the process of numerical simulation of 

dynamic systems is the global calculation error, that is, the 

difference between accurate and calculated solutions over the 

whole range of integration. 

The significance of such a characteristic for the researcher 

is undeniable. In general, it is believed that a good matrix for 

solving the Cauchy problem for ordinary differential equations 

should, at the request of the user, provide information about 

the global calculation error at each starting point [1]. 

Naturally, the exact definition of global error in modeling 

programs is not real. We can only talk about some of its 

approximation. In many cases, the investigator can only 

satisfy the order of the magnitude of the error and its sign. But 

if the global error is determined by the corresponding 

algorithms sufficiently reliable, then its calculated value can 

be tried to use to correct the results of the calculation 

conducted with low accuracy. 

II. PRELIMINARY REZULTS 

Consider the mathematical model of a dynamical system in 

the form implicit differential-algebraic equations: 

 ( , ) 0,t =ɺF x, x  (1) 

where n∈x R  - is the vector of independent 

variables, 2 1: n n+ →F R R  - is the vector-function, continuous 

by  t   and continuously differentiated with respect to 

  and  x xɺ . 

Let 
0 0 0

( ) ( , , ),   [ , ]
fin

t t t t t t= ∈x φ x  - the solution of the 

system (1) satisfying the initial condition
0 0

( )t =x x , and 

( )
m

t≈
m

x x  - the numerical approximation of this solution on 

the grid { }1
: ,   0,   0,1,...

m m m m
t t h h m+Ω = + > = . 

The global discretization error on a grid Ω is the value [3]: 

 ( ) ( ),   .
m m m

t t t= − ∈ Ω
m

δ x x  (2) 

The value of the global discretization error depends on the 

type of method used for numerical integration of the system 

(1) and the value of its local truncation error. 

If for an algebraization of the derivative in (1) on the grid 

Ω an implicit k-step method of the backward differentiation 

formulas (the BDF method [4]) is used  

 1 1

01

1 k

m i m i

im
h

+ + −
=+

= − ∑ɺ αx x  (3) 

then, as shown in [2], the numerical approximation 
m

δ  of the 

global error ( )
m

tδ  on the grid Ω satisfies the equation 
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1+m
e - is the local truncation error of the BDF method at the 

time moment 
1m

t + , calculated by the Brayton formula [2]: 

 ( )01

1 1 1

1

m

m

m m k

h

t t

+
+ + +

+ −

= −
− m me x x , (6) 

where 0

1+m
x  - is the predicted value for 

1+m
x . 
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The use of global error in modeling programs is justified in 

the case where the procedure for determining it is cheap 

enough. If the discrete system model (1) 

 
1 1 1

( , ) 0,
m m m

t+ + + =ɺF x , x  (7) 

where 
1+ɺmx  is determined by the expression (3), is solved at 

each time step by the Newton method, then the matrices A and 

B are calculated in the process of numerical integration of the 

system (1), and the matrix A is usually represented by its LU-

expansion. Therefore, the computational cost for finding 
1m+δ  

from equation (4) does not exceed the cost of one Newtonian 

iteration for equation (7). 

Equation (4) is obtained by linearization of the 

corresponding nonlinear equation, which correlates the true 

value of the global error 
1

( )
m

t +δ  with the true value of the 

local error 
1

( )
m

t +e  of the numerical method [3]. Therefore, in 

the case of the linear system (1), equation (4) is valid for any 

of the values of the global error and the accuracy of the 

determination 
1m+δ  is determined only by the error of 

estimation 
1m+e . In the case of a nonlinear system (1), 

equation (4) is valid only for small values 
1m+δ  at the points of 

the grid Ω, and the domain of its applicability, generally 

speaking, can be determined only experimentally. 

III. CALCULATION OF TRANSIENT REGIMES 

The numerical experiments have shown that the global 

error for nonlinear systems by using BDF methods is 

determined by (4) very reliably, even when its value reached 

10-15% of the calculated variable value. Therefore, there are 

every reason to use a numerical approximation of global error 

to correct the calculation results in order to increase their 

accuracy. 

If 
m

δ  is a good approximation for ( )
m

tδ , then, at is 

follows from (2), 

 
m m m

= −x x δ
⌢

 (8) 

will be a better approximation for ( )
m

tx , than 
m

x  at the grid 

Ω. 

Example 1. Consider the calculation of the transient 

process in the sequential linear oscillatory RLC-circuit, which 

is acted upon by the harmonic e.m.f. 
2

( ) sin( )E t A t
T

=
π

. 

Mathematical model of RLC-circuit: 

 
0,

2
sin 0,

C L

L L C

CU I

LI RI U A
T

− =
 + + − = 
 

π
ɺ

ɺ  (9) 

where  and  
C L

U I  - voltage on the capacitor and current 

through inductance 

The circuit parameters are: R=10(Ω), L=10
-3

 (H), C=10
-7

 

(F); The e.m.f. parameters are: A=10(V), T=62,5·10
-6

 (s).  

The proximity of the external force frequency (ω = 1.0053 

10
5
 s

-1
) to the resonance circuit frequency (ω0 = 10

5
 s

-1
) 

increases the effect of numerical errors on the calculation 

results. The simulation was carried out using the BDF method 

with various fixed orders of formulas (3) from zero initial 

conditions. In all experiments, the limit of local error at the 

step was assumed to be 10
-4

. Together with the solution, its 

global error was determined in accordance with (4). Table 1 

present the values of the circuit state variables 

( ) and  ( )
C M L M

U t I t  at the instant of time 4
M

t T= : exact 

(obtained from the analytical expression for the transient 

process), calculated (obtained by numerical integration of the 

circuit equations) and improved (taking into account the 

global error in accordance with the formula (8)). 

.

TABLE I.  CALCULATION OF TRANSIENT REGIM IN AN OSCILLATORY CIRCUIT 

The order 

of the BDF 

method 

Value UC (V) 

exact:  -71,284 

Value IL (mA) 

exact:  -28,820 

calculation improvement calculation improvement 

1 

2 

3 

4 

-66,287 

-71,021 

-71,636 

-71,394 

-71,210 

-71,339 

-71,302 

-71,261 

-23,245 

-38,548 

-30,121 

-27,274 

-28,600 

-28,953 

-28,552 

-28,621 

 

It follows from the above results, in this example, the 

global error is determined using equation (4) very confidently. 

Moreover, the calculated values of the global error make not 

less than 80% of the true values, and their consideration can 

significantly improve the accuracy of the simulation. 

 

IV. CALCULATION OF STEADY-STATE REGIMES 

Let the system (1) be time periodic with the period T> 0, 

that is:  

 ( , ) ( , )t T t+ =ɺ ɺF x, x F x, x . (10) 
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The search for the periodic regime of the system (1) can be 

reduced to the solution of the equation [5,6] 

 ( ) 0− =y P y , (11) 

where 
0

( )t=y x  - vector of initial conditions, ( )P y  - 

mapping of a point along the trajectory 
0

( ) ( , , )t t t=x φ y  of 

system (1) for period T. 

In the simulation of system (1) we have to deal with not 

exact mapping ( )P y , but with its numerical approximation 

( )ɶP y , which is calculated by means of some formulas of 

numerical integration on a grid Ω, and instead of (11) solve 

the equation 

 ( ) 0− =ɶy P y , (12) 

Assume that in the discrete system (7) there is a periodic 

mode, that is, the mapping ɶP  has a fixed point. Let *y  - a 

fixed point of the exact mapping P , and *
ɶy  - a fixed point of 

the calculated mapping ɶP . For these fixed points, the relation: 

 * * * *( ),    ( )= = +ɶɶ ɶy P y y P y d , (13) 

where d  - some vector satisfying the condition ≤ εd , 0>ε  

- the accuracy of solving the equation (12). 

We introduce the error of the calculation of the mapping P  

and the fixed point: 

 ( ) ( )= −ɶδ P y P y , (14) 

 * *= −ɶη y y , (15) 

The value δ  is simply defined in (2) the global error of a 

numerical method at a time moment 
0N

t t T= + when 

integrating the system (1) from the initial conditions 
0

( )t =x y  

on the interval [ ]0 0
,t t T+ . From (15), taking into account 

(13), we have: 

 ( ) ( )
* * * *

* * * *

( ) ( )

( ) ( ) ( ) ( )

= − = − + =
− + − +

ɶɶ ɶ

ɶ ɶ ɶɶ

η y y P y P y d

P y P y P y P y d
, (16) 

If the BDF method (3) is used for the system (1) 

discretization, then, under the assumptions made about the 

( , )tɺF x, x  smoothness, it can be shown [5] that the calculated 

mapping ɶP  will be differentiable whit the derivative 

continuous in the sense of Lipschitz, that is|: 

 ( )2
( ) ( ) ( )( ) ,   ,O′− = − + − ∀ ∈ɶ ɶ ɶ n

P y P z P y y z y z y z R ,(17) 

under the condition that ( ) і ( )ɶ ɶP y P z  are calculated on the 

same grid Ω and in the same order of k formulas of the 

numerical method (3) in the corresponding steps, and the 

matrix 
1m+A  defined in (5) is regular for all 0,1,... 1m N= − . 

Then we obtain from (16) taking into account (14) and (17) 

 ( ) 1
*

( ) ( )
−

′≈ − +ɶη I P y δ d , (18) 

where I - is a unit matrix, and the sign ≈  means “with 

precision to members ( )2
O η ”. 

If we do not take into account the rounding errors, then in 

the linear case it is possible to put 0=d , and in the nonlinear 

case, with the iterative process of the equation (12) is 

convergent (for example, Newton's method), the value d  

can be very low.  

Consequently, the error η for calculating a fixed point *y  

is mainly defined by the value ( ) 1
*

( )
−

′− ɶI P y  and global 

error δ  of the mapping calculation. 

For weakly damped systems ( ) 1
*

( ) 1
−

′− >>I P yɶ . So, in 

the case of linear system (1), it may be shown [6], that 

( ) 1
*

( ) Q
−

′−I P yɶ ∼ , where Q  - is the maximum figure of 

merit of the system (1). Therefore, when looking for a periodic 

regime of weakly damped systems to obtain reliable results, it 

is necessary to calculate with very high accuracy, which 

naturally leads to significant computational costs.  

For this to be eliminated, in the search process of the 

steady-state regime the improved value of the calculated 

mapping ( )ɶP y  may be used as  

 ( ) ( )
N

= −
⌢

ɶP y P y δ , (19) 

where 
N

δ  - is the numerical approximation of global 

error ( )
N

tδ . 

Example 2. Consider the problem of periodic states 

definition of the Duffing equation: 

 1 2

3

2 1 20, 2 0,3cos

x x

x x x t

=

= − − +

ɺ

ɺ
 (20) 

As is known, this equation has three periodic states, two of 

which are stable and one unstable. In [6] the periodic states of 

equation (20) are calculated, with high accuracy. Whit the 

initial conditions ( )1 2
(0) 0,027;  (0) 1,10x x= =  the stable 

periodic state ( )* *

1 2(0) 0,6263873;  (0) 1,03347995x x= =  is 

obtained, and with ( )1 2
(0) 0,027;  (0) 0,729x x= − =  the 

unstable periodic state an unstable periodic state 
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( )* *

1 2(0) 0,71598261;  (0) 0,74740203x x= − = . Let's take these 

values as benchmarks. 

In our case, the mapping was calculated by numerical 

integration of the equation (20) on the interval [0.2π] by the 

BDF method of the first order (implicit Euler method) with a 

constant step. The derivative of the reflection for the period 

( )′ɶP y  was determined by solving the equation in the 

variations for (20) simultaneously with ( )ɶP y . The equation 

(12) was solved by Newton's method with 410−=ε  accuracy. 

The accuracy of the calculation of the mapping ( )ɶP y  from 

experiment to experiment was increased by reducing the value 

of the integration step. Experiment results are given in Table 2 

In the first column of Table 2, the number of steps for 

integrating N in the period of forced fluctuations T in the 

various experiments is indicated. The last line shows the 

calculation results for N = 1000, taking into account the 

calculated value of global sampling error. The first line of 

each part of Table 3 gives the initial conditions from which the 

search for periodicity began. The third column of each part of 

the table specifies the processor time for solving the task 

(along with the output of the results). 

 

TABLE II.  CALCULATION OF PERIODIC STATES OF DUFFING EQUATION 

N=T/h 
1

(0)x =0,027;  
2
(0)x =1,1 1

(0)x =-0,027;  
2
(0)x =0,729 

*

1
(0)x  *

2
(0)x  t s *

1
(0)x  *

2
(0)x  t s 

1000 

5000 

10000 

1000+gl.error 

0,575 

0,620 

0,629 

0,627 

1,039 

1,034 

1,032 

1,033 

30 

129 

254 

32 

-0,689 

-0,711 

-0,715 

-0,717 

0,767 

0,750 

0,748 

0,747 

26 

100 

198 

28 

 

Comparing the obtained values * *

1 2
(0),  (0)x x of periodic 

states with reference ones, it is not difficult to make sure that 

the use of numerical approximation of global sampling error in 

the process of solution allowed, at small computational costs, 

to increase the accuracy of determining the periodic state of 

the system (20) and significantly accelerate the process of its 

search. 
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