Ab initio Calculations of YAlO₃ and ABO₃ Perovskite (001), (011) and (111) Surfaces, Interfaces and Defects

R.I. Eglitis and A.I. Popov Institute of Solid State Physics University of Latvia 8 Kengaraga Str., Riga LV1063, Latvia e-mail: rieglitis@gmail.com (Corresponding author)

Abstract—We performed first-principles calculations for technologically most important ABO₃ perovskites, such as, CaTiO₃, SrTiO₃, PbTiO₃, BaTiO₃, SrZrO₃ and PbZrO₃ (001), (011) and (111) surfaces, interfaces and bulk *F*-centers. For ABO₃ perovskite neutral (001) surfaces, in most cases, all upper surface layer atoms relax inward, whereas the all second surface layer atoms relax outward, and again, all third surface layer atoms relax inward. The relaxation pattern for YAIO₃ charged (001) surfaces is quite different from ABO₃ perovskite neutral (001) surfaces. The ABO₃ perovskite (001) surface energies are almost equal for both AO and BO₂-terminations, and always considerably smaller than the (011) and especially (111) surface energies. Systematic trends in BaTiO₃, SrTiO₃, SrZrO₃ and PbZrO₃ bulk *F*-center calculations are analyzed.

Index Terms—YAlO₃; ABO₃ perovskites; B3LYP; B3PW; surfaces

I. INTRODUCTION

Surface and interface phenomena, taking place in the ABO₃ perovskites as well as their nanostructures, the complex nature of their surface and interface states, the novel mechanisms of surface electronic processes are the key topics in nowadays solid state physics [1-7]. CaTiO₃ (CTO), SrTiO₃ (STO), PbTiO₃ (PTO), BaTiO₃ (BTO), SrZrO₃ (SZO) and PbZrO₃ (PZO) materials are so-called ABO₃ perovskites, and they have a large amount of technologically important applications, such as, for example, capacitors, actuators, and charge storage devices, and many others [8], for which the surface quality and structure are essential. This is the main reason, why in the last twenty-five years ABO₃ perovskite (001) surfaces were worldwide intensively explored both experimentally and theoretically [9-21]. At the ab initio level, it is much more difficult to calculate the ABO3 perovskite very complex, charged and polar (011) [11-13, 21-26] and (111) surfaces [27-31], than the neutral (001) surfaces [9-21].

Logical next step, after the ABO₃ perovskite (001), (011) and (111) surface theoretical investigations, is to calculate interfaces between the two ABO₃ perovskites. The further development of ABO₃ perovskite (001) interfaces is a highly promising research direction due to potential nanoscale device

applications. Taking into account the enormous technological potential of ABO₃ perovskites as well as numerous first principles calculations of their (001) surfaces [11-21], it is difficult to understand why only a small amount of experimental and *ab initio* studies exist dealing with BaTiO₃/SrTiO₃, SrZrO₃/PbZrO₃ and PbTiO₃/SrTiO₃ (001) interfaces [32-36].

It is worth to notice, that all properties of the industrially important ABO₃ perovskites are affected by the defects, for example, by oxygen vacancies. Oxygen vacancy (V_0) (so-called neutral *F*-center) in ABO₃ perovskites traps two electrons. Experimental and theoretical investigations of *F*-centres in complex ABO₃ matrixes are a very important topic, since the *F*-center is the best known classical point defect, which strongly affects all material properties [37-44].

II. COMPUTATIONAL METHOD

We performed our *ab initio* calculations for ABO₃ perovskite and YAIO₃ (YAO) surfaces using the hybrid exchange-correlation functionals B3PW [45] or B3LYP [46] as well as the world well known CRYSTAL computer code [47]. The strong side of the CRYSTAL computer code is possibility to perform *ab initio* calculations for isolated two-dimensional slabs perpendicular to the ABO₃ perovskite surface, without any artificial periodicity in the *z* direction.

For example, for calculations of ABO₃ perovskite and YAlO₃ (001) surfaces, we used symmetrical slabs consisting of nine alternating neutral AO and BO₂ (in case of ABO₃ perovskites), or charged YO and AlO₂ (in case of YAlO₃) layers. In case of ABO₃ perovskites, our first slab was terminated by AO planes from both slab sides and consisted of a supercell which contained 22 atoms. The second slab, in case of ABO₃ perovskites, was terminated from both sides by BO₂-planes and consisted from a supercell containing 23 atoms. Both AO and BO₂-terminated slabs were non-stoichiometric, with their unit cell equations $A_5B_4O_{13}$ and $A_4B_5O_{14}$. Since supercell in our calculations should be neutral, we used a basis sets for neutral Y, Al and O atoms [47] in our YAlO₃ (001) surface calculations. Calculation details for ABO₃ perovskite

polar (011) and (111) surfaces are described by us in references [11-13, 21-31].

We have used the same model for modelling of BaTiO₃/SrTiO₃, SrZrO₃/PbZrO₃ and PbTiO₃/SrTiO₃ (001) interfaces [34-36]. For example, calculations of the BaTiO₃/SrTiO₃ (001) interfaces were carried out using the symmetrically terminated slab model. The SrTiO₃ substrate contained 11 atomic monolayers and was terminated by the TiO₂ monolayer from both substrate sides. Next, monolayer by monolayer epitaxial growth was modelled by adding a pair of BaTiO₃ (001) monolayers symmetrically to both sides of a SrTiO₃ substrate slab [34-36]. Finally, the ABO₃ perovskite, or for example, the BaTiO₃ bulk *F*-center calculations were carried out using 3 x 3 x 3 times extended supercell model. Such a supercell in our calculations contains 134 atoms as well as one isolated *F*-center defect [38,40,43].

III. FIRST-PRINCIPLES CALCULATIONS OF SURFACES

As a first step of our calculations, we calculated the ABO₃ perovskite and YAO bulk lattice constants [2]. Using the B3PW hybrid exchange-correlation functional, we calculated the STO (3.904Å), BTO (4.008Å), PTO (3.936Å), and CTO (3.851Å) as well as using the hybrid B3LYP exchange-correlation functional the SZO (4.195Å), PZO (4.220Å), and YAO (3.712Å) cubic bulk lattice constants. We used calculated cubic bulk lattice constants in all our future calculations.

TABLE I. OUR CALCULATED RELAXATION OF ATOMS (IN PERCENT OF BULK LATTICE CONSTANT) FOR CTO, BTO, SZO, PZO PEROVSKITES AS WELL AS YAO.

	СТО	BTO	SZO	PZO	YAO
nin.	CaO	BaO	SrO	PbO	YO
Ion	B3PW	B3PW	B3LYP	B3LYP	B3LYP
Α	-8.31	-1.99	-7.63	-5.69	-9.16
0	-0.42	-0.63	-0.86	-2.37	1.89
В	1.12	1.74	0.86	0.57	-0.32
0	0.01	1.40	-0.05	0.09	-0.20
Α	-	-	-1.53	-0.47	-3.34
0	-	-	-0.45	-0.47	-0.03
nin.	TiO ₂	TiO ₂	ZrO ₂	ZrO ₂	AlO ₂
В	-1.71	-3.08	-1.38	-2.37	-0.23
0	-0.10	-0.35	-2.10	-1.99	-0.55
А	2.75	2.51	2.81	4.36	0.48
0	1.05	0.38	0.91	1.04	0.10
В	-	-	-0.04	-0.47	0.00
0	-	-	-0.05	-0.28	-0.01
	Inin. Ion A O B O A O A O B O A O B O A O B O A O B O A O B O A O B O A O B O A O B O A O B O A O O A O O A O O A O O A O O A A O A A A A A A A A A A A A A	$\begin{array}{c c} & CTO \\ \hline \text{in.} & CaO \\ \hline \text{Ion} & B3PW \\ \hline A & -8.31 \\ \hline O & -0.42 \\ \hline B & 1.12 \\ \hline O & 0.01 \\ \hline A & - \\ \hline O & 0.01 \\ \hline A & - \\ \hline O & - \\ \hline \text{nin.} & TiO_2 \\ \hline B & -1.71 \\ \hline O & -0.10 \\ \hline A & 2.75 \\ \hline O & 1.05 \\ \hline B & - \\ \hline O & - \\ \hline O & - \\ \hline \end{array}$	CTO BTO iin. CaO BaO Ion B3PW B3PW A -8.31 -1.99 O -0.42 -0.63 B 1.12 1.74 O 0.01 1.40 A - - O 0.01 1.40 A - - O - - O - - nin. TiO2 TiO2 B -1.71 -3.08 O -0.10 -0.35 A 2.75 2.51 O 1.05 0.38 B - - O - -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CTO BTO SZO PZO iin. CaO BaO SrO PbO Ion B3PW B3PW B3LYP B3LYP A -8.31 -1.99 -7.63 -5.69 O -0.42 -0.63 -0.86 -2.37 B 1.12 1.74 0.86 0.57 O 0.01 1.40 -0.05 0.09 A - - -1.53 -0.47 O - - -0.45 -0.47 nin. TiO2 TiO2 ZrO2 ZrO2 B -1.71 -3.08 -1.38 -2.37 O -0.10 -0.35 -2.10 -1.99 A 2.75 2.51 2.81 4.36 O 1.05 0.38 0.91 1.04 B - - -0.05 -0.28

As a next step of our calculations, we performed upper three layer atom relaxation for neutral AO and BO_2 -terminated

ABO₃ perovskite (001) surfaces as well as charged YO and AlO₂-terminated YAlO₃ (001) surfaces (Table I). In the case of ABO₃ perovskites, all upper layer atoms for both terminations relax inwards, all second layer atoms, with the single exception of second layer O atom for SrO-terminated SZO (001) surface, outwards, and all third layer atoms for both terminations, again, relax inwards [2]. The relaxation pattern for charged YO and AlO₂-terminated YAlO₃ (001) surfaces is quite different from neutral ABO₃ perovskite (001) surface relaxation pattern.

TABLE II. OUR CALCULATED SURFACE ENERGIES (IN EV PER SURFACE CELL).

Crystal	СТО	BTO	SZO	PZO		
Termination	Surface energies for (001) surfaces					
AO	0.94	1.19	1.13	1.00		
BO ₂	1.13	1.07	1.24	0.93		
	Surface energies for (011) surfaces					
BO	3.13	2.04	3.61	1.89		
А	1.91	3.24	2.21	1.74		
0	1.86	1.72	2.23	1.85		
	Surface energies for (111) surfaces					
AO ₃	5.86	8.40	9.45	8.21		
В	4.18	7.28	7.98	6.93		

As we can see from Table II, our calculated ABO₃ perovskite neutral (001) surface energies for both AO and BO₂terminations are almost equal, whereas polar (011) and (111) surface energies for different surface terminations are quite different. It is worth to notice, that the polar (111) surface energies, independently from termination, always are considerably larger than the polar (011) surface energies, but polar (011) surface energies are always larger than the (001) surface energies.

IV.FIRST-PRINCIPLES CALCULATIONS OF INTERFACES

performed ab initio studies We dealing with BaTiO₃/SrTiO₃, SrZrO₃/PbZrO₃ and PbTiO₃/SrTiO₃ (001) interfaces [34-36]. As example we will analyze BaTiO₃/SrTiO₃ (001) interface. We used as a substrate 11 layer thick symmetrical SrTiO₃ (001) slab from both sides terminated with TiO₂ (001) surfaces and augmented to both sides of this substrate BaO-terminated BaTiO₃ slab. The band gap of this our 13-layers containing system is equal to 3.47 eV. If we add to the SrTiO₃ (001) substrate from both sides 3, 5, 7 or 9 BaOterminated layers, the band gap of our system is equal to 3.29, 3.25, 3.24 and 3.22 eV. So, the BaTiO₃/SrTiO₃ interface band gap rather slowly decrease with the number of layers from 3.47 eV (1 augmented BaO-terminated layer from both sides) till 3.22 eV (9 augmented BaO-terminated BaTiO₃ layers augmented from both sides on SrTiO₃ substrate). If we augment on SrTiO₃ (001) slab from both sides 2, 4, 6, 8 or 10 TiO₂-terminated BaTiO₃ (001) layers, the interface band gap is equal to 2.33, 2.16, 2.10, 2.06 and 2.06 eV.

V.FIRST-PRINCIPLES CALCULATIONS OF DEFECTS

Our B3PW calculated nearest atom displacements surrounding the *F*-center in ABO₃ perovskites are collected in Table III and compared with related results obtained for other ABO₃ perovskites [38-41, 43].

Bulk <i>F</i> -center	BTO	STO	SZO	PZO
F-center charge, e	-1.103	-1.1	-1.25	-0.68
F under CB, eV	0.23	0.69	1.12	1.72
Form. energy, eV	10.3	7.1	7.55	7.25
B relax., % of a_0	1.06	7.76	3.68	0.48
O relax., % of a_0	-0.71	-7.79	-2.63	-
A relax., % of a_0	-0.08	3.94	0.46	-5.99

TABLE III. CALCULATED BULK F-CENTER MAIN CHARACTERISTICS.

As we can see from Table III, the two nearest to the *F*-center Ti atoms are by 1.06% of a_0 repulsed in the BaTiO₃ from the oxygen vacancy. Also in another ABO₃ perovskites, such as SrTiO₃, SrZrO₃ and PbZrO₃, B atoms are repulsed from the oxygen vacancy by 7.76, 3.68 and 0.48 % of a_0 . In contrast, the second nearest O atoms in the ABO₃ perovskites always are attracted towards the *F*-center by 0.71, 7.79 and 2.63 % of a_0 in the BaTiO₃, SrTiO₃ and SrZrO₃.

Inside the oxygen vacancy in BaTiO₃, SrTiO₃, SrZrO₃ and PbZrO₃ are located -1.103*e*, -1.1*e*, -1.25*e* and -0.68*e* of additional charge. The *F*-center formation energy for ABO₃ perovskites are in the range between 7 and 10 eV. For example, the calculated BaTiO₃, SrTiO₃, SrZrO₃ and PbZrO₃ formation energies are equal to 10.3, 7.1, 7.55 and 7.25 eV. The *F*-center defect induced levels in the band gap of ABO₃ perovskites are located more close to the conduction band bottom, than the valence band top. For example, the *F*-center defect induced 0.23, 0.69, 1.12 and 1.72 eV below the conduction band bottom in the BaTiO₃, SrTiO₃, SrZrO₃ and PbZrO₃ perovskites.

CONCLUSIONS

ABO₃ perovskite neutral (001) surface upper layer atoms, with a few exceptions, relax inwards, second layer atoms upwards, and third layer atoms, again, inwards. Relaxation pattern for YAlO₃ charged (001) surfaces is quite different from ABO₃ perovskite neutral (001) surfaces. The ABO₃ perovskite (001) surface energies for both possible terminations AO and BO₂ are almost similar. The ABO₃ perovskite polar (111) surface energies are considerably larger than the polar (011) surface energies. The neutral ABO₃ perovskite (001) surface energies always are smaller than the polar (011) and especially (111) surface energies. The BaTiO₃/SrTiO₃, SrZrO₃/PbZrO₃ and PbTiO₃/SrTiO₃ (001) interface band gap depends much more strongly from the termination of the upper augmented layer (AO or BO₂) than from the number of augmented layers. Results of our calculations for the classical point defect F-center in ABO₃ perovskites are presented, and systematic trends, common for *F*-center defects in ABO₃ perovskites are analyzed.

ACKNOWLEDGMENT

The authors R. I. Eglitis and A. I. Popov thanks Joint Latvian-Ukrainian Research Project No. LV-UA/2016/1 for financial support.

REFERENCES

- C. Noguera, "Polar oxide surfaces," J. Phys.: Condens. Matter, vol. 12, pp. R367-R410, 2000.
- [2] R. I. Eglitis and A. I. Popov, "Systematic trends in (001) surface *ab initio* calculations of ABO₃ perovskites," J. Saudi Chem. Soc., vol. 22, pp. 459-468, 2018.
- [3] M. Dawber, K. M. Rabe and J. F. Scott, "Physics of thin-film ferroelectric oxides," Rev. Mod. Phys. vol. 77, pp. 1083-1130, 2005.
- [4] R. A. P. Ribeiro, J. Andrés, E. Longo and S. R. Lazaro, "Magnetism and multiferroic properties at MnTiO₃ surfaces: A DFT study," Appl. Surf. Sci., vol. 452, pp. 463-472, 2018.
- [5] V. P. Savchyn, A. I. Popov, O. I. Aksimentyeva, H. Klym, Yu. Yu. Horbenko, V. Serga, A. Moskina and I. Karbovnyk, "Cathodoluminescence characterization of polystyrene-BaZrO₃ hybrid composites," Low Temp. Phys., vol. 42, pp. 760-763, 2016.
- [6] J. S. Kim and Y. C. Kim, "Equilibrium crystal shape of BaZrO₃ and space charge formation in the (011) surface by using *ab-initio* thermodynamics," Journal of the Korean Physical Society, vol. 70, pp. 75-80, 2017.
- [7] S. Sanna and W. G. Schmidt, "LiNbO₃ surfaces from a microscopic perspective," J. Phys.: Condens. Matter, vol. 29, pp. 413001, 2017.
- [8] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa and Y. Tokura, "Emergent phenomena at oxide interfaces", Nature Mater., vol. 11, pp. 103-113, 2012.
- [9] S. Gerhold, Z. Wang, M. Schmid, U. Diebold, "Stoichiometry-driven switching between surface reconstructions on SrTiO₃ (001)," Surf. Sci., vol. 621, pp. L1-L4, 2014.
- [10] Y. Lin, A. E. Becerra-Toledo, F. Silly, K.R. Poeppelmeier, M. R. Castell, L. D. Marks, "The (2x2) reconstructions on the SrTiO₃ (001) surface: A combined scanning tunneling microscopy and density functional theory study," Surf. Sci., vol. 605, pp. L51-L55, 2011.
- [11] R. I. Eglitis and D. Vanderbilt, "Ab initio calculations of BaTiO₃ and PbTiO₃ (001) and (011) surface structures, "Phys. Rev. B, vol. 76, pp. 155439, 2007.
- [12] R. I. Eglitis and D. Vanderbilt, "Ab initio calculations of the atomic and electronic structure of CaTiO₃ (001) and (011) surfaces," Phys. Rev. B, vol. 78, pp. 155420, 2008.
- [13] R. I. Eglitis and D. Vanderbilt, "First-principles calculations of atomic and electronic structure of SrTiO₃ (001) and (011) surfaces," Phys. Rev. B, vol. 77, pp. 195408, 2008.
- [14] M.G. Brik, C.-G. Ma, V. Krasnenko, "First-principles calculations of the structural and electronic properties of the cubic CaZrO₃ (001) surfaces," Surf. Sci., vol. 608, pp. 146-153 (2013).
- [15] B. Luo, X. Wang, E. Tian, G. Li, L. Li, "Structural and electronic properties of cubic KNbO₃ (001) surfaces: A first-principles study," Applied Surface Science, vol. 351, pp. 558-564, 2015.
- [16] J. R. Sambrano, V. M. Longo, E. Longo, C. A. Taft, "Electronic and structural properties of the (001) SrZrO₃ surface," Journal of Molecular Structure: THEOCHEM, vol. 813, pp. 49-56, 2007.
- [17] C.-G. Ma, V. Krasnenko, M. G. Brik, "First-principles calculations of different (001) surface terminations of three cubic perovskites CsCaBr₃, CsGeBr₃ and CsSnBr₃," J. Phys. Chem. Solids, vol. **115**, pp. 289-299, 2018.
- [18] E. S. Goh, L. H. Ong, T. L. Yoon, K. H. Chew, "Structural relaxation of BaTiO₃ slab with tetragonal (100) surface: *Ab initio* comparison of different thickness," Current Appl. Phys., vol. **16**, pp. 1491-1497, 2016.

- [19] G. Borstel, R. I. Eglitis, E. A. Kotomin and E. Heifets, "Modelling of defects and surfaces in perovskite ferroelectrics," Phys. Stat. Sol. B, vol. 236, pp. 253-264, 2003.
- [20] E. A. Kotomin, R. I. Eglitis, J. Maier and E. Heifets, "Calculations of the atomic and electronic structure for SrTiO₃ perovskite thin films," Thin Solid Films, vol. **400**, pp. 76-80, 2001.
- [21] R. I. Eglitis and M. Rohlfing, "First-principles calculations of the atomic and electronic structure of SrZrO₃ and PbZrO₃ (001) and (011) surfaces, "J. Phys.: Condens. Matter, vol. 22, pp. 415901, 2010.
- [22] H. Chen, Y. Xie, G.-H. Zhang and H.-T. Yu, "A first-principles investigation of the stabilities and electronic properties of SrZrO₃ (110) (1 x 1) polar terminations," J. Phys.: Condens. Matter, vol. 26, pp. 395002, 2014.
- [23] J.-M. Zhang, J. Cui, K.-W. Xu, V. Ji and Z.-Y. Man, "Ab initio modeling of CaTiO₃ (110) polar surfaces," Phys. Rev. B, vol. 76, pp. 115426, 2007.
- [24] E. Heifets, J. Ho and B. Merinov, "Density functional simulation of the BaZrO₃ (011) surface structure," Phys. Rev. B, vol. 75, pp. 115431, 2007.
- [25] Y. Xie, H.-T. Yu, G.-X. Zhang, H.-G. Fu and J.-Z. Sun, "First-Principles Investigation of Stability and Structural Properties of the BaTiO₃ (110) Polar Surface," J. Phys. Chem. C, vol. **111**, pp. 6343-6349, 2009.
- [26] J. Wang, G. Tang and X. S. Wu, "Thermodynamic stability of BaTiO₃ (110) surfaces," Phys. Stat. Sol. B , vol. 249, pp. 796-800, 2012.
- [27] R. I. Eglitis, "Ab initio calculations of the atomic and electronic structure of BaZrO₃ (111) surfaces," Solid State Ionics, vol. 230, pp. 43-47, 2013.
- [28] R. I. Eglitis, "Ab initio hybrid DFT calculations of BaTiO₃, PbTiO₃, SrZrO₃ and PbZrO₃ (111) surfaces," Applied Surface Science, vol. 358, pp. 556-562, 2015.
- [29] W. Liu, C. Wang, J. Cui and Z.-Y. Man, "Ab initio calculations of the CaTiO₃ (111) polar surfaces," Solid State Communications, vol. 149, pp. 1871-1876, 2009.
- [30] R. I. Eglitis, "Comparative *ab initio* calculations of SrTiO₃ and CaTiO₃ polar (111) surfaces," Phys. Stat. Sol. B, vol. 252, pp. 635-642, 2015.
- [31] N. Sivadas, H. Dixit, V. R. Cooper and D. Xiao, "Thickness-dependent carrier density at the surface of SrTiO₃ (111) slabs," Phys. Rev. B, vol. 89, pp. 075303, 2014.
- [32] V. Stepkova, P. Marton, N. Setter, J. Hlinka, "Closed-circuit domain quadruplets in BaTiO₃ nanorods embedded in a SrTiO₃ film," Phys. Rev. B, vol. 89, pp. 060101, 2014.
- [33] Z. Bi, B. P. Uberuaga, L. J. Vernon, E. Fu, Y. Wang, N. Li, H. Wang, A. Misra, Q. X. Jia, "Radiation damage in heteroepitaxial BaTiO₃ thin films on SrTiO₃ under Ne ion irradiation," J. Appl. Phys., vol. **113**, pp. 023513, 2013.

- [34] S. Piskunov and R. I. Eglitis, "First principles hybrid DFT calculations of BaTiO₃/SrTiO₃ (001) interface," Solid State Ionics, vol. 274, pp. 29-33, 2015.
- [35] S. Piskunov and R. I. Eglitis, "Comparative *ab initio* calculations of SrTiO₃/BaTiO₃ and SrZrO₃/PbZrO₃ (001) heterostructures," Nucl. Instr. & Meth. B, vol. **374**, pp. 20-23, 2016.
- [36] R. I. Eglitis, S. Piskunov and Y. F. Zhukovskii, "Ab initio calculations of PbTiO₃/SrTiO₃ (001) heterostructures," Phys. Stat. Sol. C, vol. 13, pp. 913-920, 2016.
- [37] E. A. Kotomin and A. I. Popov, "Radiation-induced point defects in simple oxides,", Nucl. Instr. & Meth. B, vol. 141, pp. 1-15, 1998.
- [38] M. Sokolov, R. I. Eglitis, S. Piskunov and Y. F. Zhukovskii, "*Ab initio* hybrid DFT calculations of BaTiO₃ bulk and BaO-terminated (001) surface *F*-centers," Int. J. Mod. Phys. B, vol. **31**, pp. 1750251, 2017.
- [39] J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Y. F. Zhukovskii, R. A. Evarestov, Y. A. Mastrikov, S. Piskunov and J. Maier, "First-principles calculations of the atomic and electronic structure *F* centers in bulk and on the (001) surface of SrTiO₃,", Phys. Rev. B, vol. **73**, pp. 064106, 2006.
- [40] Y. F. Zhukovskii, E. A. Kotomin, S. Piskunov and D. E. Ellis, "A comparative *ab initio* study of bulk and surface oxygen vacancies in PbTiO₃, PbZrO₃ and SrTiO₃ perovskites," Solid State Commun., vol. 149, pp. 1359-1362, 2009.
- [41] R. I. Eglitis and S. Piskunov, "First principles calculations of SrZrO₃ bulk and ZrO₂-terminated (001) surface *F*-centers," Computational Condensed Matter, vol. 7, pp. 1-6, 2016.
- [42] S. Piskunov, A. Gopeyenko, E. A. Kotomin, Y. F. Zhukovskii and D. E. Ellis, "Atomic and electronic structure of perfect and defective PbZrO₃ perovskite: Hybrid DFT calculations of cubic and orthorhombic phases", Comput. Mater. Sci., vol. 41, pp. 195-201, 2007.
- [43] E. A. Kotomin, S. Piskunov, Y. F. Zhukovskii, R. I. Eglitis, A. Gopeyenko and D. E. Ellis, "The electronic properties of an oxygen vacancy at ZrO₂-terminated (001) surfaces of a cubic PbZrO₃: computer simulations from the first principles," Phys. Chem. Chem. Phys., vol. 10, pp. 4258-4263, 2008.
- [44] E. A. Kotomin, R. I. Eglitis and A. I. Popov, "Charge distributions and optical properies of F⁺ and F centres in KNbO₃ crystals," J. Phys.: Condens. Matter, vol. 9, pp. L315-L321, 1997.
- [45] A. D. Becke, "Density-functional thermochemistry. III. The role of exact exchange," J. Chem. Phys., vol. 98, pp. 5648-5652, 1993.
- [46] C. Lee, W. Yang, R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Phys. Rev. B, vol. 37, pp. 785-789, 1988
- [47] V. R. Saunders, R. Dovesi, C. Roetti, N. Causa, N. M. Harrison, R. Orlando, C. M. Zicovich-Wilson, CRYSTAL-2009 User Manual, University of Torino, Italy, 2009.