Transformation of Nanostructured Voids in the Crystallized GeS₂-Ga₂S₃-CsCl Glasses

Halyna Klym Specialized Computer System Dpt., Lviv Polytechnic National University, Lviv, Ukraine e-mail: klymha@yahoo.com

Ivan Karbovnyk Electronics and Computer Technologies Dpt., Ivan Franko National University of Lviv Lviv, Ukraine <u>ivan_karbovnyck@yahoo.com</u>

Abstract—Transformation of voids in crystallized (80GeS₂-20Ga₂S₃)_{100-x}(CsCl)_x, x = 0; 5; 10; 15 chalcogenide glasses was studied by positron annihilation lifetime spectroscopy. The CsCl content in GeS₂-Ga₂S₃ glassy matrix changed the defect-related component in positron lifetime spectra and confirmed the structural void agglomeration in comparison with the base glass. A larger amount of CsCl in (80GeS₂-20Ga₂S₃)₈₅(CsCl)₁₅ glass resulted in void fragmentation due to loosening of the structure.

Index Terms—Nanostructures; glasses; crystallization; positron trapping; positronium decay

I. INTRODUCTION

Sulfide-based chalcogenide glasses (ChG) are considered as good candidates for optoelectronics and photonics applications due to a wide optical transmission range (from 0.45 to 12 μ m) [1-3]. It was shown that alkali halides like CsCl, added into GeS₂-Ga₂S₃ glassy matrix, expanded the visible transmission window towards shorter wavelengths [4,5]. Moreover, thermal, mechanical and physical properties of GeS₂-Ga₂S₃-CsCl glasses can be improved by a controlled crystallization during heat treatment [6,7]. Such processes lead to a nanostructural transformation of internal free-volume voids in crystallized GeS₂-Ga₂S₃ chalcogenide glasses with different CsCl content.

There are many experimental techniques to study the atomic void structure of solids [8-11], but they are limited at the sub-nanometer scale. One of the informative tools used to identify and study internal free volumes in various materials is positron annihilation lifetime (PAL) spectroscopy [12,13]. This method is based on the positron-electron interaction in condensed matter [14]. In chalcogenide glasses and glass-ceramics, PAL spectroscopy is used to study voids in the frame of the model that considers two channels – positron trapping in extended free-volume defects and ortho-positronim (o-Ps) decaying in holes [13]. In addition, PAL measurements are effective for the study of atomic void structure in solids affected by different nanostructured elements (nucleates, agglomerates, fragments of crystallites, vacancy clusters and free-volume voids, etc.) [14].

Adam Ingram Opole University of Technology, Opole, Poland e-mail: <u>a.ingram@po.opole.pl</u>

Oleh Shpotyuk Vlokh Institute of Physical Optics, Lviv, Ukraine e-mail: <u>olehshpotyuk@yahoo.com</u>

In previous works [15,16], we investigated the free-volume structure in 80GeSe₂-20Ga₂Se₃ chalcogenide glass with controlled crystallization, after thermal annealing above glass transition temperature over different time frames. We also analyzed interface void volumes formed by nanocrystals using the x3-x2-decomposition procedure described in Ref. [16]. Transformations of the defect-related component of the PAL crystallized lifetime spectra for 80GeSe₂-20Ga₂Se₃ chalcogenide glass confirmed the structural fragmentation of larger voids into smaller ones at the crystallization of GeGa₄Se, Ga₂Se₃ and GeSe₂ phases with further void agglomeration during the initial stage of annealing [15]. In the case of asprepared GeS₂-Ga₂S₃-CsCl glasses, the free-volume void agglomeration is observed with increasing CsCl content in the glassy matrix. In this work, we analyzed the free-volume nanostructural evolution in $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{100-x}(\text{CsCl})_x$, x = 0; 5; 10; 15 glasses caused by completely "cold" crystallization using PAL spectroscopy. Simultaneous positron-positronium trapping (x3-x2-decomposition) as proposed earlier is considered in order to analyze the free-volume nanostructured media formed by CsCl.

II. EXPERIMENTAL

GeS₂-Ga₂S₃-CsCl chalcogenide glasses were prepared from a mixture of high purity materials (99.999 % for Ge, Ga, S and 99.9 % for CsCl) in a silica ampule kept at 10⁻⁶ Pa vacuum as described in detail elsewhere [5,7]. The raw materials were melted at 850 °C in a silica tube for several hours. After melting, glasses were annealed at 15 °C, *i.e.* below the glass transition temperature T_g for each glass [5] in order to minimize inner strains. The crystallization of (80GeS₂-20Ga₂S₃)_{100-x}(CsCl)_x, x = 0; 5; 10; 15 glasses was performed by thermal treatment at (T_g + 30) °C. This temperature results in a full crystallization of chalcogenide glasses, allowing the growth of nanoparticles inside the glassy matrix.

The PAL spectra were measured with an ORTEC system with a resolution of 230 ps at T = 22 °C and relative humidity of RH = 35 % (see Refs. [16-18] for additional details). The

²²Na isotope was used as positron source. Two identical samples were placed on the positron source in a "sandwich" configuration. Each PAL spectrum was investigated with a number of channels of 8000.

The measured PAL spectra were processed using version 9.0 of the LT software [19] and processed by applying threecomponent fitting procedure, with lifetimes τ_1 , τ_2 , τ_3 and intensities I_1 , I_2 , I_3 being principal parameters. The positron trapping modes (average positron lifetimes τ_{av} , positron lifetime in defect-free bulk τ_b and positron trapping rate in defects κ_d) were calculated using the well-known two-state positron trapping model [20,21]. In addition, the ($\tau_2 - \tau_b$) difference, describing the size of extended free-volume defects, where positrons are trapped, and the τ_2/τ_b ratio were correlated with the nature of these defects.

To describe the formation of nanostructures in $GeS_2-Ga_2S_3$ -CsCl glasses caused by the content of CsCl and full crystallization, the x3-x2-decomposition algorithm was used as a test-indicator in terms of the transformation of o-Ps-sites in the undoped matrix towards positron-trapping sites in a CsCldoped and nanoparticle-modified glass according to [16].

III. RESULTS AND DISCUSSION

As shown earlier in [15,16], "cold" crystallization in chalcogenide glasses leads to transformations of their atomic void structure. The fitting parameters and positron trapping modes obtained within three-component procedure for PAL spectra of $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{100-x}(\text{CsCl})_x$, x = 0; 5; 10; 15 glasses are given in Fig. 1, Fig. 2 and Fig. 3, respectively. The first component (see Fig. 1) with the fitting parameters τ_I and I_I has no physical meaning which is also true for other chalcogenide glasses [15].

Fig. 1. Lifetime τ_l and intensity I_l as a function of CsCl content in 80GeS₂-20Ga₂S₃ glass.

The τ_2 lifetime reflects the size of free voids where positrons are trapped, and the intensity I_2 is proportional to the number of these voids if the defect-free bulk annihilation lifetime is the same [22]. The third component with the lifetime τ_3 and the intensity I_3 is obtained by the fitting procedure, confirming the o-Ps formation at a level of 1-2 %. We will now focus on analyzing the second (τ_2 , I_2) component which represents the main nanostructural free-volume void transformation in crystallized GeS₂-Ga₂S₃-CsCl chalcogenide glasses with different amounts of CsCl in the glass matrix.

With the increase of $(CsCl)_x$ additives to x=5 and x=10, the lifetime τ_2 increases and intensity I_2 decreases as compared to $80GeS_2-20Ga_2S_3$ (see Fig. 2). These transformations correspond to void expansion and agglomeration (see Fig. 3) as well as in GeS₂-Ga₂S₃-CsCl chalcogenide glasses before crystallization [23].

Fig. 2. Lifetime τ_2 and intensity I_2 as a function of CsCl content in $80\text{GeS}_2-20\text{Ga}_2\text{S}_3$ glass.

Fig. 3. Schematic illustration of void agglomeration in Ge-Ga-S-CsCl glasses.

Eventually, the positron trapping rate κ_d in voids reduces mainly due to the increase of the intensity I_2 . Other positron trapping parameters such as the lifetime τ_b and the difference ($\tau_2 - \tau_b$), reflecting the size of extended free-volume defects where positrons are trapped, are in correlation with these changes (Fig. 4 and Fig. 5). The τ_2/τ_b ratio shows a very small change with CsCl content (Fig. 5).

Another tendency is observed for crystallized (80GeS₂-20Ga₂S₃)₈₅(CsCl)₁₅ glass in comparison with other CsClcontaining chalcogenide glasses. The lifetime τ_2 increases and the intensity I_2 is stable with respect to 80GeS₂-20Ga₂S₃ glasses indicating slow void expansion in chalcogenide glasses with CsCl additives (Fig. 2).

Fig. 4. Average lifetime, defect-free lifetime and positron trapping rate in defects as a function of CsCl content in 80GeS₂-20Ga₂S₃ glass describing void agglomeration.

Fig. 5. Size of extended free-volume defects, where positrons are trapped, τ_2/τ_b ratio as a function of CsCl content in 80GeS₂-20Ga₂S₃ glass.

However, as compared to $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{90}(\text{CsCl})_{10}$ glasses, in $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{85}(\text{CsCl})_{15}$ chalcogenide glass the lifetime τ_2 decreases and the intensity I_2 increases, proving a possible void fragmentation [15]. Such a free-volume transformation is caused by loosening of inner glass structure when CsCl content is high.

To study the free-volume void transformation processes caused by the formation of nanostructures in CsCl-containing Ge-Ga-S chalcogenide glasses, where inner inclusions affect both positron and Ps trapping, the x3-x2-decomposition algorithm was used [16]. To do this, the PAL spectra of $80GeS_2$ -20Ga₂S₃ chalcogenide glass and of glasses with CsCl additives were processed using three-component x3 fitting. It is shown that the o-Ps decaying plays no essential role in the formation of nanostructures as the intensity is within the standard deviation error. The lifetime τ_3 slightly rises in crystallized samples with CsCl (see Fig. 6).

Fig. 6. Lifetime τ_3 and intensity I_3 as a function of CsCl content in 80GeS₂-20Ga₂S₃ glass.

As far as mixed positron- and o-Ps-trapping modes are considered, all samples show almost the same average lifetime $\tau_{av.}$ Large values of the lifetime τ_b (0.26-0.27 ns) demonstrate a rather loose packing of nanoparticles formed after crystallization which is caused by impossibility to distinguish inputs from positron- and o-Ps-trapping modes. So-called "pure" positron-positronium modes calculated using x3-x2decomposition formalism described in [16] can be extracted from the full trapping processes data (Table 1). The components (τ_n , I_n) and (τ_{int} , I_{int}) describe physical parametrization of nanoparticle-connected sites in crystallized glasses within the two-term decomposed PAL spectrum. The defect-related lifetime τ_{int} reflects positron trapping sites due to embedded CsCl and nanoparticles were formed after the crystallization.

The increase of the lifetime τ_{int} and the intensity I_{int} in the recalculated final x2-spectrum for $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{95}(\text{CsCl})_5$ and $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{90}(\text{CsCl})_{10}$ glasses with respect to $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{100}(\text{CsCl})_0$ glass indicate that realistic process is very likely connected with the expansion of voids formed as a consequence of CsCl addition and full crystallization into inner structure of glasses.

Recalculating these results with respect to $(80GeS_2-20Ga_2S_3)_{95}(CsCl)_5$ glass (the second line in Table 3), one can observe two different tendencies in the void transformation. The CsCl additive forms new free volume voids (new positron-trapping sites appear) in $(80GeS_2-20Ga_2S_3)_{95}(CsCl)_5$ glass in comparison with the base $80GeS_2-20Ga_2S_3$ chalcogende glass.

Crystallized $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{90}(\text{CsCl})_{10}$ glass is affected by void agglomeration, while in $(80\text{GeS}_2-20\text{Ga}_2\text{S}_3)_{85}(\text{CsCl})_{15}$ glass, void fragmentation occurs. The bulk positron lifetime in all samples corresponds to positron trapping occurring in nanocrystalline particles. Interlace voids are not very large because the characteristic value of 0.27-0.30 ns can be connected with typical free volumes of mono- and divacancies [15,16, 23].

Sample	τ_n ,	Tint,	I _{int} ,	$ au_b,$	Kd,	τ_n ,	Tint,	I _{int} ,	$ au_b,$	Kd,
	ns	ns	a.u.	ns	ns ⁻¹	ns	ns	a.u.	ns	ns ⁻¹
(CsCl) ₀	-	-	-	-	-	0,237	0.547	-0.071	0.293	0.812
(CsCl) ₅	0,237	0.547	0.045	0.277	0.611	-	-	-	-	-
(CsCl)10	0,237	0.596	0.067	0.320	0.536	0.345	0.676	0.026	0.403	0.415
(CsCl) ₁₅	0,228	0.495	0.121	0.284	0.854	0.222	0.461	0.073	0.276	0.867

TABLE 1. PAL TRAPPING PARAMETERS FOR CRYSTALLIZED $(80GeS_2-20Ga_2S_3)_{100-x}(CsCl)_x, x = 0; 5; 10; 15$ glasses processed with the x3-x2-decomposition algorithm (with respect to the original matrix without CsCl)

CONCLUSIONS

The transformation of intrinsic free-volume voids in fully crystallized $80GeSe_2-20Ga_2Se_3$ chalcogenide glasses caused by the addition of CsCl leads to a specific void agglomeration in comparison with the base glass and to the expansion of voids with increasing of CsCl amount. In comparison with ($80GeS_2-20Ga_2S_3$)₉₀(CsCl)₁₀ glass, in ($80GeS_2-20Ga_2S_3$)₈₅(CsCl)₁₅ chalcogenide glass the void fragmentation is possible due to loosening of the glass structure. Using the x3-x2-decomposition algorithm it was shown that CsCl additive forms new interface voids (positron-trapping sites) in GeS₂-Ga₂S₃ matrix and stimulates their expansion in crystallized glassy matrix.

ACKNOWLEDGMENT

Authors thank to Dr. L. Calvez for sample preparation. I. Karbovnyk thanks to the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778156.

REFERENCES

- K. Abe, H. Takebe, and K. Morinaga "Preparation and properties of Ge-Ga-S glasses for laser hosts", *Journal of non-crystalline solids*, vol. 212(2-3), 1997, pp. 143-150.
- [2] X.H. Zhang, Y. Guimond, and Y. Bellec, "Production of complex chalcogenide glass optics by molding for thermal imaging", *Journal of Non-Crystalline Solids*, vol. 326, 2003, pp. 519-523.
- [3] L. Calvez, P. Lucas, M. Rozé, H.L. Ma, J. Lucas, and X.H. Zhang, "Influence of gallium and alkali halide addition on the optical and thermo-mechanical properties of GeSe₂-Ga₂Se₃ glass", *Applied Physics A*, vol. 89(1), 2007, pp. 183-188.
- [4] Y. Ledemi, L. Calvez, M. Rozé, X.H. Zhang, B. Bureau, M. Poulain, and Y. Messaddeq, "Totally visible transparent chloro-sulphide glasses based on Ga₂S₃-GeS₂-CsCl", *Journal of Optoelectronics and Advanced Materials*, vol. 9(12), 2007, pp. 3751.
- [5] P. Masselin, D. Le Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, "CsCl effect on the optical properties of the 80GeS₂-20Ga₂S₃ base glass", Applied Physics A, vol. 106, No 3, 2012, pp. 697-702.
- [6] C. Lin, L. Calvez, M. Rozé, H. Tao, X. Zhang, and X. Zhao, "Crystallization behavior of 80GeS₂-20Ga₂S₃ chalcogenide glass", *Applied Physics A*, vol. 97(3), 2009, pp. 713-720.
- [7] Y. Ledemi, B. Bureau, L. Calvez, M.L. Floch, M. Rozé, C. Lin, and Y. Messaddeq, "Structural investigations of glass ceramics in the Ga₂S₃-GeS₂-CsCl system. *The Journal of Physical Chemistry B*, vol. 113(44), 2009, pp. 14574-14580.
- [8] H. Guo, Y. Zhai, H. Tao, G. Dong, and X. Zhao, "Structure and properties of GeS₂-Ga₂S₃-CdI₂ chalcohalide glasses, *Materials Science* and Engineering: B, vol. 138(3), 2007, pp. 235-240.

- [9] Y. Ledemi, S.H. Messaddeq, I. Skhripachev, S.J.L. Ribeiro, and Y. Messaddeq, "Influence of Ga incorporation on photoinduced phenomena in Ge–S based glasses", *Journal of Non-Crystalline Solids*, vol. 355(37-42), 2009, pp. 1884-1889.
- [10] A.M. Loireau-Lozac'h, F. Keller-Besrest, and S. Benazeth, "Short and medium range order in Ga–Ge–S glasses: an X-ray absorption spectroscopy study at room and low temperatures", *Journal of Solid State Chemistry*, vol. 123(1), 1996, pp. 60-67.
- [11] X.F. Wang, S.X. Gu, J.G. Yu, X.J. Zhao, and H.Z. Tao, "Structural investigations of GeS₂–Ga₂S₃–CdS chalcogenide glasses using Raman spectroscopy", *Solid state communications*, vol. 130(7), 2004, pp. 459-464.
- [12] R. Krause-Rehberg, and H. Leipner, "Positron annihilation in semiconductors: defect studies", Springer-Verlag Berlin Heidelberg, Germany 1999.
- [13] Y.C. Jean, P.E. Mallon, and D.M. Schrader, "Principles and application of positron and positronium chemistry", World Sci. Publ. Co. Pte. Ltd., New Jersy-London-Singapore-Hong Kong 2003.
- [14] F. Tuomisto, and I. Makkonen, "Defect identification in semiconductors with positron annihilation: experiment and theory", *Reviews of Modern Physics*, vol. 85(4), 2013, pp. 1583.
- [15] O. Shpotyuk, L. Calvez, E. Petracovschi, H. Klym, A. Ingram, and P. Demchenko, "Thermally-induced crystallization behaviour of 80GeSe₂-20Ga₂Se₃ glass as probed by combined X-ray diffraction and PAL spectroscopy", *Journal of Alloys and Compounds*, vol. 582, 2014, pp. 323-327.
- [16] O. Shpotyuk, J. Filipecki, A. Ingram, R. Golovchak, M. Vakiv, H. Klym, V. Balitska, M. Shpotyuk, and A. Kozdras, "Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool", *Nanoscale research letters*, vol. 10(1), 2015, pp. 77.
- [17] H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and I. Hadzaman, "Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy", *Journal of Physics: Conference Series*, vol. 289, No. 1, 2011, pp. 012010.
- [18] J. Filipecki, A. Ingram, H. Klym, O. Shpotyuk, and M. Vakiv, "Watersensitive positron trapping modes in nanoporous magnesium aluminate ceramics.", *Journal of Physics: Conference Series*, vol. 79, No. 1, 2007, pp. 012015.
- [19] J. Kansy, "Microcomputer program for analysis of positron annihilation lifetime spectra", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 374(2), 1996, pp. 235-244.
- [20] O.E. Mogensen, "Positron annihilation in chemistry", Springer, Berlin, Germany 1995.
- [21] H. Nakanishi, Y.C. Jean, D.M. Schrader, Y.C. Jean, "In positron and positronium chemistry", Elsevier, Amsterdam, The Netherland 1998.
- [22] P.M.G.Nambissan, C. Upadhyay, and H.C. Verma, "Positron lifetime spectroscopic studies of nanocrystalline ZnFe₂O₄", *Journal of applied Physics*, vol. 93(10), 2003, pp. 6320-6326.
- [23] H. Klym, A. Ingram, O. Shpotyuk, and R. Szatanik, "Free-volume study in GeS₂-Ga₂S₃-CsCl chalcohalide glasses using positron annihilation technique", *Physics Procedia*, 76, 2015, pp. 145-148.