
1

Real time operation systems

2

Confidential

2

Agenda

1. Real time operation systems.

2. Thread scheduling.

3. Context switch.

4. Interrupt latency.

3 3

Real time operation systems.

4 4

What is RTOS

A real-time operating system (RTOS) is an operating

system (OS) intended to serve real-time applications

that process data as it comes in, typically without

buffer delays. Processing time requirements (including

any OS delay) are measured in tenths of seconds or

shorter increments of time.

5 5

RTOS

• A key characteristic of an RTOS is the level of its consistency
concerning the amount of time it takes to accept and complete an
application's task; the variability is 'jitter’.

• A 'hard' real-time operating system has less jitter than a 'soft' real-
time operating system. The chief design goal is not high throughput,
but rather a guarantee of a soft or hard performance category.

• An RTOS that can usually or generally meet a deadline is a soft real-
time OS, but if it can meet a deadline deterministically it is a hard
real-time OS.

6 6

Why we need RTOS

• For automotive, medical devices, spaceships, trains, drones, robots,

• All of this device need to guarantee reaction in a real time

7 7

Why we need RTOS

• Small latency: It is real-time after all!

• Determinism: Again, it is real-time. You need to know how long
things take to process to make sure deadlines are met.

• Structured Software: With an RTOS, you are able divide and
conquer in a structure manner. It's straight-forward to add additional
components into the application.

• Scalability: An RTOS must be able to scale from a simple application
to a complex one with stacks, drivers, file systems, etc.

• Offload development: An RTOS manages many aspects of the
system which allows a developer to focus on their application. For
example an RTOS, along with scheduling, generally handles power
management, interrupt table management, memory management,
exception handling, etc.

8 8

Terms

• Interrupt Service Routine (ISR): Thread initiated by a hardware
interrupt. An ISR is assert and it runs to completion. ISRs all share
the same stack.

• Tasks: Thread that can block while waiting for an event to occur.
Tasks are traditionally long living threads (as opposed to ISRs which
run to completion). Each task has it's own stack which allows it to be
long living.

• Idle: Lowest priority thread that only runs when no other thread is
ready to execute. Generally Idle is just a special task with the lowest
possible priority.

9 9

Components

• Scheduler: Preemptive scheduler that guarantees the highest priority
thread it running.

• Communication Mechanism: Semaphores, Message Queues,
Queues, etc.

• Critical Region Mechanisms: Mutexes, Gates, Locks, etc.

• Timing Services: Clocks, Timers, etc.

• Memory Management: Variable-size heaps, fixed-size heaps, etc.

10 10

Thread scheduling

11 11

Thread scheduling

12 12

Thread scheduling

Preemptive Scheduling: This is the most common type of RTOS
scheduler. With a preemptive scheduler, a running thread continues until
it either

• finishes (e.g. an ISR completes)

• a higher priority thread becomes ready (in this case the higher priority
thread preempts the lower priority thread)

• the thread gives up the processor while waiting for a resource (e.g. a
task calls sleep()).

13 13

Thread scheduling

• Time-slice Scheduling: This type of scheduling guarantees that each
thread is given a slot to execute. This type of scheduling is generally
not conducive to real-time application.

14 14

Context switch

15 15

Context switch

16 16

17 17

Interrupt latency

18 18

Interrupt latency

19

Thank you

20

