Linear Models, Bayesian Inference, Machine Learning and Reinforcement Learning In Business Time Series Forecasting

Bohdan Pavlyshenko (Ph.D.)

LinkedIn: https://www.linkedin.com/in/bpavlyshenko/ e-mail: b.pavlyshenko@gmail.com

Time Series

Effects:

- Seasonality
- Trend
- Autoregression
- External factors influence

Descriptive Analytics

Univariate Time Series Forecasting

Popular models:

- ARIMA, SARIMA, SARIMAX
- Holt-Winters
- GARCH

Challenges of using univariate time series methods:

- It is needed to have historical data for long time period to capture seasonality.
- Sales can have complicated seasonality intra-day, intra-week, intra-month, annual.
- Sales data can have a lot of outliers and missing data.
- It is problematic to take into account a lot of exogenous factors which have impact on sales.
- These methods do not explain sales movements under external factors.

Time Series Regression Approaches

Additive Regression Model:

Sales = Trend + Seasonality + Events_Impact + Pricing_Effects + Advertising_Effects + Promo_Effects + Competitor_Factors + Social_Economic_Factors + Macro_Economic_Factors + Other_Factors

> Multiplicative model can be received by logarithmic transformation of target variable.

Predictive regression models can be split into three categories:

- Linear models
- Probabilistic models
- Machine learning models

Linear Regression

$$y(x, w) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x) \qquad \Phi = \begin{pmatrix} \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_{M-1}(x_1) \\ \phi_0(x_2) & \phi_1(x_2) & \cdots & \phi_{M-1}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_N) & \phi_1(x_N) & \cdots & \phi_{M-1}(x_N) \end{pmatrix}$$

 $\boldsymbol{w} = (\Phi^T \Phi)^{-1} \Phi^T t$

Lasso Regression

$$E = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(\mathbf{x})\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|$$

Ridge Regression

$$E = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \boldsymbol{w}^T \boldsymbol{\emptyset}(\boldsymbol{x}) \right\}^2 + \frac{\lambda}{2} \boldsymbol{w}^T \boldsymbol{w} \qquad \boldsymbol{w} = (\lambda \mathbf{I} + \Phi^T \Phi)^{-1} \Phi^T t$$

Lasso Regression

Bayesian Inference

$$p(\boldsymbol{w}|D) = \frac{p(D|\boldsymbol{w})p(\boldsymbol{w})}{p(D)} \qquad p(D) = \int p(D|\boldsymbol{w})p(\boldsymbol{w})d\boldsymbol{w}$$

Sampling

$$E(f(z)) = \int f(z)p(z)dz$$
$$\{z_i | i = 1, \dots, L\}$$
$$\hat{f} = \frac{1}{L} \sum_{i=1}^{L} f(z_i)$$

$$t = 1, 2, ..., T$$

$$z = \{z_i | i = 1, ..., M\}$$

$$z_1^{(t+1)} \sim p\left(z_1 | z_2^{(t)}, z_3^{(t)}, ..., z_M^{(t)}\right)$$

$$z_2^{(t+1)} \sim p\left(z_2 | z_1^{(t+1)}, z_3^{(t)}, ..., z_M^{(t)}\right)$$

$$z_j^{(t+1)} \sim p\left(z_j | z_1^{(t+1)}, ..., z_{j-1}^{(t+1)}, z_{j+1}^{(t)}, ..., z_M^{(t)}\right)$$

$$z_M^{(t+1)} \sim p\left(z_M | z_1^{(t+1)}, z_2^{(t+1)}, ..., z_{M-1}^{(t+1)}\right)$$

Bayesian Inference for Sales Time Series Forecasting

beta_weekday_0 beta_weekday_1 beta_weekday_2 beta_weekday_3 beta_weekday_4 beta_weekday_5

Bayesian Inference for Sales Time Series Forecasting

9.0

8.8

8.6

8.4

8.2

2015-01-12

2015-01-19

Hierarchical Models

Sales Time Series Prediction (log scale)

2015-02.09 Date

2015-024

2015-01-26

2015-02-23

2015.02-16

2015-03-02

Box plots for intersect parameter

Box plots for intersect parameter when one store has short historical data

Supervised Machine Learning

Popular Classifiers and Regressors:

- ≻ SVM
- Random Forest
- XGBoost
- LightGBM
- Neural Networks (Keras)

Ensemble methods:

- ➢ Bagging
- Stacking

- Tree based ML algorithms are not sensitive to monotonic transformations of the features.
- Most machine learning methods can work with stationary data only.

Random Forest Regression

ML Generalization

Case with long time (2 years) historical data for specified store.

Case with short time (5 days) historical data for specified store.

Ensemble of Classifiers Using Stacking Approach

Model	Validation Error	Out-of-sample Error
ExtraTrees	14.7%	14.0%
ARIMA	13.8%	11.4%
RandomForest	13.8%	12.1%
Lasso	13.4%	11.5%
NeuralNetwork	13.0%	10.9%
Stacking	12.6%	10.2%

Winner Solution for Grupo Bimbo Inventory Demand Kaggle Competition

https://www.kaggle.com/c/grupo-bimbo-inventory-demand/discussion/23863

Reinforcement Learning

Main Notions:

- ✓ Environment
- ✓ Agent
- ✓ States (s)
- ✓ Action (a)
- ✓ Reward (R(s,a))
- ✓ Policy (π (s)→ a)
- ✓ Episode

Policy Gradient:

$$J(\theta) = \sum_{s} d(s) \sum_{a} \pi_{\theta}(s,a) R(s,a)$$
$$\Delta \theta = \alpha \nabla_{\theta} J(\theta)$$

Q-Learning:

$$Q^{new}(s,a) = (1 - \alpha)Q(s,a) + \alpha \left[R(s,a) + \gamma \max_{a} Q(s',a') \right]$$

Q-Learning for Pricing Strategy

Demand Time Series

Profit vs Extra Price

Q-Learning for Pricing Strategy

Epsilon vs Time

Actions vs Time

Q-Learning for Supply-Demand Problems

Mean Reward on Episodes

Action Frequency

Actions vs Week Day Heatmap

Community Detection in Graph of Users' Connections

Community Walktrap Algorithm

This function tries to find densely connected subgraphs, also called communities in a graph via random walks. The idea is that short random walks tend to stay in the same community.

Users' Communities

Fruchterman-Reingold layout

Place vertices on the plane using the force-directed layout algorithm by Fruchterman and Reingold.

Subgraph of highly isolated users' communities

Graph Vertices Scores

Hub Score

The hub scores of the vertices are defined as the principal eigenvector of A*t(A), where A is the adjacency matrix of the graph.

Authority Score The authority scores of the vertices are defined as the principal eigenvector of t(A)*A, where A is the adjacency matrix of the graph

PageRank Score Calculates the Google PageRank for the specified vertices.

Betweenness Score

The vertex and edge betweenness are (roughly) defined by the number of geodesics (shortest paths) going through a vertex or an edge

Frequent Itemsets

Sentiment & Personality Analytics with IBM Watson

Random tweets subset

Keyword 'walmart'

Hashtag 'teslasolarissues'

Hashtag 'teslamodel3'

Keywords Time Series

Tweets time series (keyword 'tesla')

Tweets time series (keyword 'walmart')

Tweets time series (hashtag 'teslasolarissues')

Tweets time series (keyword 'solar panel')

Stock Price Predictive Analytics (ticker TSLA)

Normalized time series for keywords

Time Series for stock price

Modeling of stock price return using Lasso regression

Coefficients for tweets keywords features in Lasso regression model for price

Stock Price Predictive Analytics (ticker TSLA)

Boxplots for coefficients in Bayesian regression model

Q-Learning for Stock Price Analytics (ticker TSLA)

Price return for the episodes

Thank you !