
1

Confidential

Python tutorial

Vasyl Vovk, Consultant, Globallogic

2

Confidential

1. args and kwargs;
2. Decorators;
3. Classes.

Agenda

3

Confidential

args and kwargs

4

Confidential

args and kwargs

5

Confidential

Decorators

6

Confidential

In Python, functions are the first class objects, which means that:
● Functions are objects; they can be referenced to, passed to a variable

and returned from other functions as well.
● Functions can be defined inside another function and can also be

passed as argument to another function.

Decorators are very powerful and useful tool in Python since it allows
programmers to modify the behavior of function or class. Decorators allow us to
wrap another function in order to extend the behavior of wrapped function,
without permanently modifying it.

In Decorators, functions are taken as the argument into another function
and then called inside the wrapper function.

Decorators

7

Confidential

Decorators in python is syntax sugar and don’t do any kind of “magic”. For
instance this code:

Is equals to:

Decorators

8

Confidential

We can easily implement caching for function using decorators:

Decorators

9

Confidential

Now decorator can be applied to function:

When function will be called second time, no calculation will be performed:

Decorators

10

Confidential

You can apply several decorators for one functions. Let’s create decorator
to measure time of function execution:

Decorators

11

Confidential

Decorators

12

Confidential

Classes

13

Confidential

def scope_test():

 def do_local():

 spam = "local spam"

 def do_nonlocal():

 nonlocal spam

 spam = "nonlocal spam"

 def do_global():

 global spam

 spam = "global spam"

 spam = "test spam"

 do_local()

 print("After local assignment:", spam)

 do_nonlocal()

 print("After nonlocal assignment:", spam)

 do_global()

 print("After global assignment:", spam)

scope_test()

print("In global scope:", spam)

Scopes and Namespaces

14

Confidential

the definitions for the data format and available procedures for a given
type or class of object; may also contain data and procedures (known
as class methods) themselves, i.e. classes contains the data
members and member functions

Classes

15

Confidential

class File:

 object_counter = 0

 def __init__(self, file_name, method):

 self.file_obj = open(file_name, method)

 def __enter__(self):

 return self.file_obj

 def __exit__(self, type, value, traceback):

 self.file_obj.close()

 def run(self):

 pass

 f = File(“text.txt”, “w”)

Instance method

Instance variable

Class variable

Class instance

Classes

16

Confidential

In object-oriented programming (OOP), an instance is a concrete
occurrence of any object, existing usually during the runtime of a
computer program. Formally, "instance" is synonymous with "object"
as they are each a particular value (realization), and these may be
called an instance object; "instance" emphasizes the distinct identity
of the object. The creation of an instance is called instantiation.

Class instance

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)

17

Confidential

def get_no_of_instances(cls_obj):

 return cls_obj.no_inst

class Kls(object):

 no_inst = 0

 def __init__(self, data):

 Kls.no_inst = Kls.no_inst + 1

ik1 = Kls()

ik2 = Kls()

print(get_no_of_instances(Kls))

Static data

18

Confidential

class File:

 def __init__(self, data):

 self.data = data

 def printd(self):

 print(self.data)

 @staticmethod

 def smethod(*args):

 print('Static:', args)

 @classmethod

 def cmethod(*args):

 print('Class:', args)

Static/Class method

19

Confidential

class Student:
 pass

john = Student() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.scholarship = “4000$”

Class. Empty

20

Confidential

Things explained

21

Confidential

class DerivedClassName(BaseClassName):
 <statement-1>
 .
 .
 .
 <statement-N>

Inheritance

22

Confidential

The name BaseClassName must be defined in a scope containing the
derived class definition. In place of a base class name, other arbitrary
expressions are also allowed. This can be useful, for example, when
the base class is defined in another module

Inheritance

23

Confidential

Exercise: create class hierarchy for Animals

Inheritance

24

Confidential

Python has two built-in functions that work with inheritance:
• Use isinstance() to check an instance’s type: isinstance(obj, int) will

be True only if obj.__class__ is int or some class derived from int
• Use issubclass() to check class inheritance: issubclass(bool, int) is

True since bool is a subclass of int. However, issubclass(unicode,
str) is False since unicode is not a subclass of str (they only share a
common ancestor, basestring)

Inheritance. Built-in function

https://docs.python.org/2/library/functions.html#isinstance
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#issubclass
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#basestring

25

Confidential

class DerivedClassName(Base1, Base2, Base3):
 <statement-1>
 .
 .
 .
 <statement-N>

Multiple inheritance

26

Confidential

https://makina-corpus.com/blog/metier/2014/python-tutorial-understa
nding-python-mro-class-search-path

MRO

https://makina-corpus.com/blog/metier/2014/python-tutorial-understanding-python-mro-class-search-path
https://makina-corpus.com/blog/metier/2014/python-tutorial-understanding-python-mro-class-search-path
https://www.python.org/download/releases/2.3/mro/

27

Confidential

class Mapping:
 def __init__(self, iterable):
 self.items_list = []
 self.__update(iterable)

 def update(self, iterable):
 for item in iterable:
 self.items_list.append(item)

 __update = update # private copy of original update() method

class MappingSubclass(Mapping):
 def update(self, keys, values):
 # provides new signature for update()
 # but does not break __init__()
 for item in zip(keys, values):
 self.items_list.append(item)

Private Variables and Class-local References

28

Confidential

is a way to combine simple objects or data types into more complex
ones

Composition

https://en.wikipedia.org/wiki/Association_(object-oriented_programming)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Data_type

29

Confidential

Aggregation is a type of composition. It Differs from ordinary
composition in that it does not imply ownership.

In composition, when the owning object is destroyed, so are the
contained objects. In aggregation, this is not necessarily true.

Aggregation

30

Confidential

For example, a university owns various departments (e.g., chemistry),
and each department has a number of professors. If the university
closes, the departments will no longer exist, but the professors in
those departments will continue to exist. Therefore, a University can
be seen as a composition of departments, whereas departments have
an aggregation of professors. In addition, a Professor could work in
more than one department, but a department could not be part of
more than one university.

Composition and Aggregation examples

https://en.wikipedia.org/wiki/University
https://en.wikipedia.org/wiki/Chemistry

31

Confidential

Composition and Aggregation examples

32

Confidential

Composition

Aggregation

33

Confidential

Object.__method__

https://www.python-course.eu/python3_magic_methods.php

Magic Methods

https://www.python-course.eu/python3_magic_methods.php

34

Confidential

Questions?

